

旭立科技股份有限公司

PROFESSIONAL TIM MANUFACTURER

THERMAL INTERFACE MATERIALS

100

SHIU LI TECHNOLOGY

Founded in 2005, Shiu Li Technology has established itself as a leading thermal management manufacturer, developing high-performance thermal solutions for product designers around the globe.

For nearly 20 years, Shiu Li Technology has supplied some of the largest technology brands in the world with its brand of LiPOLY thermal interface materials.

INNOVATIVE THERMAL SOLUTIONS

LiPOLY materials have been designed into hundreds of applications for some of the largest electronic companies in the world. We listen to our customers' needs and develop thermal solutions that meet our customers' specific design requirements.

Our customers come to us because LiPOLY deliver innovative and reliable thermal interface solutions.

//BRANCH OFFICE

/ NIHON KYOKURITSUKAGI CO., LYD 4th floor, TR Building, 2-1 Kogicho, Kaizuka City, Osaka Prefecture 597-0001

/ KUNSHAN SHIU LI ELECTRONICS CO., LTD Area B, 2nd Floor, Building A1, No. 398, Hengchangjing Road, Zhoushi Town, Kunshan City, Jiangsu Province

/ SHEN ZHEN SHIU LI ELECTRONIC CO., LTD 13F, Quanzhi Science and Technology Innovation Park, Hooting, Shajing Street, Baoan District, Shenzhen

/ U.S. Office 550 N.BRAND BLVD. 14TH FLOOR, GLEN-DALE, CA 91203

/ VIETNAM SHIU LI TECHNOLOGY CO., LTD. Factory A6-1, Lot 6, Cam Dien – Luong Dien Industrial Park, Luong Dien Commune, Cam Giang District, Hai Duong Province, Vietnam

//HEADQUARTER

SHIU LI TECHNOLOGY CO ., LTD No.435, Yongfeng Rd., Bade Dist., Taoyuan City 334, Taiwan(R.O.C.)

- Management Center
- Production Center
- R&D Center
- Sales Center

TEL:+886-3-3788588 FAX:+886-3-3788288 service@lipoly.com

PRODUCT INDEX

Thermal Conductive Gap Pad Series

High Thermal	Conductive Gap Filler	
T-top81-s	High Thermal Conductive Gap Filler	р.7-8
T-work7000	High Thermal Conductive Gap Filler	p.9-10
T-top91-s	High Thermal Conductive Gap Filler	p.11-12
T-work8000	High Thermal Conductive Gap Filler	p.13-14
T-top98-s	High Thermal Conductive Gap Filler	p.15-16
T-work9000	High Thermal Conductive Gap Filler	p.17-18
Thermal Cond	luctive Gel Pad	
PK223	Thermal Conductive Gel Pad	р.19
PK404	Thermal Conductive Gel Pad	p.20
PK504	Thermal Conductive Gel Pad	p.21
PK605	Thermal Conductive Gel Pad	p.22
PK700	Thermal Conductive Gel Pad	p.23
Exceptionally	Soft Thermal Conductive Gel Pad	
BS75K	Exceptionally Soft Thermal Conductive Gel Pad	p.24
BS87-s	Exceptionally Soft Thermal Conductive Gel Pad	p.25
BS89	Exceptionally Soft Thermal Conductive Gel Pad	p.26
S282-s	Exceptionally Soft Thermal Conductive Gel Pad	p.27
Ultra Low Oil-	Bleed Thermal Conductive Gel Pad	
AS200-s	Ultra Low Oil-Bleed Thermal Conductive Gel Pad	p.28
AS400-s	Ultra Low Oil-Bleed Thermal Conductive Gel Pad	p.29
Non-Silicone	Thermal Conductive Pad	
N700A	Non-Silicone Thermal Conductive Pad	p.30
N700B	Non-Silicone Thermal Conductive Pad	p.31
N700C	Non-Silicone Thermal Conductive Pad	p.32
N800AH-s	Non-Silicone Thermal Conductive Pad	p.33
N800A-s	Non-Silicone Thermal Conductive Pad	p.34
N800BH	Non-Silicone Thermal Conductive Pad	p.35
N800B	Non-Silicone Thermal Conductive Pad	p.36
N800CH	Non-Silicone Thermal Conductive Pad	p.37
N800C	Non-Silicone Thermal Conductive Pad	p.38

Thermal Liquid Gap Filler Series

Silicone Liquid Gap Filler

•	Thermal	Conductive	Putty
---	---------	------------	-------

S-putty	Thermal Conductive Putty	p.39
S-putty2-s	Thermal Conductive Putty	p.40
H-putty	Thermal Conductive Putty	
H-putty2	Thermal Conductive Putty	
SH-putty3	Thermal Conductive Putty	
S-putty5-s	Thermal Conductive Putty	p.44
• Two-Part Th	nermal Conductive Gap Filler	
PK223DM	Two-Part Thermal Conductive Gap Filler	p.45-46
PK404DM	Two-Part Thermal Conductive Gap Filler	p.47-48
PK605DM	Two-Part Thermal Conductive Gap Filler	p.49-50
PK700DM	Two-Part Thermal Conductive Gap Filler	p.51-52
• Two-Part Th	nermal Conductive Sealing Glue	
TPS586/TPS5	868 Two-Part Thermal Conductive Sealing Glue	p.53

TPS31/TPS32	Two-Part Thermal Conductive Sealing Glue Lightweight Two-Part Thermal Conductive Sealing Glue	•
TIM12	nal Conductive Die Attach Adhesive Two-Part Thermal Conductive Die Attach Adhesive Two-Part Thermal Conductive Die Attach Adhesive	
D2000	le Thermal Grease Two-Part Curable Thermal Grease	p.60-61
 Thermal Grease TT3000 G3380A/B/K/T 	Nano Thermal Grease Thermal Grease Series	
Non-Silicone Liqui	id Gap Filler nermal Conductive Putty	
N-putty	Non-Silicone Thermal Conductive Putty Non-Silicone Thermal Conductive Putty	
EPDM20	vo-Part Thermal Conductive Adhesive Non-Silicone Two-Part Thermal Conductive Adhesive Non-Silicone Two-Part Thermal Conductive Adhesive	
	vo-Part Thermal Conductive Sealing Glue Non-Silicone Two-Part Thermal Conductive Sealing Glue	p.68
Non-Silicone Th G3380NA/NB/NC	ermal Grease Non-Silicone Thermal Grease Series	p.69
Thermal Co	nductive Absorber Series	
	conductive RF Absorber Pad	
	Thermal Conductive RF Absorber Pad Thermal Conductive RF Absorber Pad	
	Thermal Conductive RF Absorber Pad	•
Non-Silicone Ther N-TEM52 N-TEM53 N-TEM54	mal Conductive RF Absorber Pad Non-Silicone Thermal Conductive RF Absorber Pad Non-Silicone Thermal Conductive RF Absorber Pad Non-Silicone Thermal Conductive RF Absorber Pad	p.74
		-

5G mmWave Thermal Conductive Gel Pad

DTT44-s	5G mmWave Thermal Conductive Gel Pad	p.76
DTT65-s	5G mmWave Thermal Conductive Gel Pad	p.77

Thermal Conductive Tape Series

UL Flammability Thermal Conductive Tape

ST6000-S	UL Flammability Thermal Conductive Tape	p.78
AT910	UL Flammability Thermal Conductive Tape	p.79
Insulated Therma	Conductive Tape	
AT900A	Insulated Thermal Conductive Tape	p.80
AT900C	Insulated Thermal Conductive Tape	n 81
		p.o.,

Insulated Thermal Conductive Series

High Insulated Thermal Conductive Film

PR27	High Insulated Thermal Conductive Film	p.83
PR28-s	High Insulated Thermal Conductive Film	p.84

SH1500/2000/3	D00 High Insulated Thermal Conductive Pad Series	p.85
Thermal Conduc	tive Rubber Cap/Tube	
SP22/23/33	Thermal Conductive Rubber Cap Series	p.86
CP-S	Thermal Conductive Rubber Cap	p.87
TP200	Thermal Conductive Rubber Tube	p.88

Artificial Graphite Series

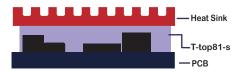
Complex Thermal Conductive Material

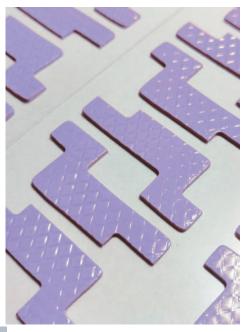
TR332CU	Complex Thermal Conductive Film	p.89
G566A/G566AP	Artificial Graphite Sheet	p.90

1

T-top81-s

High Thermal Conductive Gap Filler


LiPOLY T-top81-s offers outstanding thermal conductivity at 8.0 W/m*K and extremely low thermal resistance under minimal force. T-top81-s offers excellent compression, filling small air gaps on uneven surfaces, ensuring an efficient and consistent transfer of heat.


FEATURES

/ Thermal conductivity: 8.0 W/m*K/ High compression rate/ Extremely low thermal impedance

TYPICAL APPLICATION

- / Between CPU and heat sink
- / Between a component and heat sink
- / Flat-panel displays
- / Power supplies
- / High speed mass storage drives
- / Telecommunication hardware
- / 5G base station & infrastructure
- / EV electric vehicle

CONSTRUCTION

Series	Chai	racteristics		Configurations		
T-top81-s	Silicone compound with weak sticky surfaces.			Sheets form, Die-cuts parts		
TYPICAL PROPERTIES						
PROPERTY	T-top81-s	TE	ST METHOD	UNIT		
Color	Purple		Visual	-		

	-		
Color	Purple	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	3.4	ASTM D792	g/cm³
Hardness	35	ASTM D2240	Shore OO
TML	<0.1	By LiPOLY	%
Application temperature	-60~150	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION			'
Deflection @10 psi	7	ASTM D5470 modify	%
Deflection @20 psi	20	ASTM D5470 modify	%
Deflection @30 psi	43	ASTM D5470 modify	%
Deflection @40 psi	64	ASTM D5470 modify	%
Deflection @50 psi	68	ASTM D5470 modify	%
ELECTRICAL			'
Dielectric breakdown	8	ASTM D149	KV/mm
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
Dielectric constant@10MHz Dk	10.2	ASTM D150	-
Dielectric constant@1GHz Dk	10.1	ASTM D150	-
Dielectric constant@1.8GHz Dk	10.8	ASTM D150	-
Dielectric factor@10MHz D _f	0.006	ASTM D150	-
Dielectric factor@1GHz D _f	0.002	ASTM D150	-
Dielectric factor@1.8GHz Df	0.021	ASTM D150	-
THERMAL			'
Thermal conductivity	8.0	ASTM D5470	W/m*K
Thermal conductivity	5.5	ISO 22007-2	W/m*K
Thermal impedance@10psi	0.260	ASTM D5470	°C-in²/ W
Thermal impedance@20psi	0.221	ASTM D5470	°C-in²/ W
Thermal impedance@30psi	0.148	ASTM D5470	°C-in²/ W
Thermal impedance@40psi	0.122	ASTM D5470	°C-in²/ W
	0.122		
Thermal impedance@50psi	0.112	ASTM D5470	°C-in²/ W

THERMAL IMPEDANCE & COMPRESSION

Compression	Therm	al Impedance (°	C-in²/W)		Compression (%)
Force (psi)	1.0 mm	2.0 mm	3.0 mm	1.0 mm	2.0 mm	3.0 mm
10	0.260	0.427	0.613	7	13	16
20	0.221	0.344	0.372	20	30	56
30	0.148	0.212	0.227	43	58	69
40	0.122	0.156	0.182	64	76	85
50	0.112	0.133	0.148	68	80	89

Test method: ASTM D5470

RELIABILITY

Test Property	Compression Force (psi)	70°C							
		Initial	100 hrs	250 hrs	500 hrs	1000 hrs			
Thermal Resistance	10	0.260	0.261	0.260	0.261	0.262			
	30	0.148	0.148	0.149	0.149	0.150			
	50	0.112	0.113	0.114	0.113	0.115			

Test Property	Compression Force (noi)	150°C							
	Compression Force (psi)	Initial	100 hrs	250 hrs	500 hrs	1000 hrs			
Thermal Resistance	10	0.260	0.261	0.262	0.261	0.262			
	30	0.148	0.149	0.150	0.149	0.151			
	50	0.112	0.114	0.113	0.113	0.114			

Test Property	Compression Force (psi)	60°C / 90%RH						
		Initial	100 hrs	250 hrs	500 hrs	1000 hrs		
Thermal Resistance	10	0.260	0.260	0.259	0.260	0.259		
	30	0.148	0.149	0.148	0.149	0.149		
	50	0.112	0.113	0.112	0.112	0.111		

Test Property	Compression Force (psi)	-40°C (30min) ←→ +125°C (30min)							
		0 Cycles	100 Cycles	200 Cycles	300 Cycles	400 Cycles	500 Cycles		
Thermal Resistance	10	0.260	0.260	0.261	0.260	0.261	0.261		
	30	0.148	0.149	0.148	0.150	0.149	0.150		
	50	0.112	0.113	0.112	0.113	0.113	0.114		

Test Property	Compression Force (psi)	Ultra Low Temperature -60°C							
		Initial	100 hrs	200 hrs	300 hrs	400 hrs	500 hrs		
Thermal Resistance	10	0.260	0.260	0.261	0.260	0.261	0.260		
	30	0.148	0.147	0.148	0.147	0.148	0.148		
	50	0.112	0.111	0.112	0.112	0.112	0.111		

Test method: ASTM D5470 , Specimen thickness = 1.0mm , Unit: °C-in²/W

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the safety before using the material. We strongly recommend the purchaser pre-test the product and verify the performance of the product and the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

T-work7000

High Thermal Conductive Gap Filler

LiPOLY T-work7000 offers outstanding thermal conductivity at 11.0 W/m*K and extremely low thermal resistance under minimal force. T-work7000 offers excellent compression, filling small air gaps on uneven surfaces, ensuring an efficient and consistent transfer of heat.

FEATURES

/ Thermal conductivity: 11.0 W/m*K/ High compression rate/ Extremely low thermal impedance

TYPICAL APPLICATION

- / Between CPU and heat sink
- / Between a component and heat sink
- / Flat-panel displays
- / Power supplies
- / High speed mass storage drives
- / Telecommunication hardware
- / 5G base station & infrastructure
- / EV electric vehicle

CONSTRUCTION

Series	Cha	racteristics		Configura	tions				
T-work7000		compound wi ky surfaces.	th	Sheets fo Die-cuts p	,				
TYPICAL P	ROPERTI	ES							
PROPERTY		T-work7000	TE	ST METHOD	UNIT				
Color		Gray Green		Visual	-				
Surface tack 2-side	e/1-side	2		-	-				
Thickness		Customized	ŀ	ASTM D374	mm				
Density		3.4	ŀ	ASTM D792	g/cm³				
Hardness		65	A	STM D2240	Shore OOO				
TML		<0.1		By LiPOLY	%				
Application temper	ature	-60~150		-	°C				
ROHS & REACH		Compliant		-	-				
COMPRESSION									
Deflection @10 ps	i	14	AST	/I D5470 modify	%				
Deflection @20 ps	i	24	AST	/I D5470 modify	%				
Deflection @30 ps	i	47	ASTM D5470 modify		%				
Deflection @40 psi		55	AST	/I D5470 modify	%				
Deflection @50 ps	i	59	AST	/I D5470 modify	%				
ELECTRICAL									
Dielectric breakdow	vn	8	ASTM D149		KV/mm				
Surface resistivity		>1011	ASTM D257		Ohm				
Volume resistivity		>1010	ļ	ASTM D257	Ohm-m				
Dielectric constant	@10MHz D⊧	10.4	ŀ	ASTM D150	-				
Dielectric constant	@1GHz D⊧	10.4	ŀ	ASTM D150	-				
Dielectric constant	@1.8GHz Dĸ	11.6	ŀ	ASTM D150	-				
Dielectric factor@1	0MHz D _f	0.007	A	ASTM D150	-				
Dielectric factor@1	GHz Df	0.001	A	ASTM D150	-				
Dielectric factor@1	.8GHz Df	0.021	ŀ	ASTM D150	-				
THERMAL									
Thermal conductiv	ity	11.0	A	STM D5470	W/m*K				
Thermal conductiv	ity	6.5	I:	SO 22007-2	W/m*K				
Thermal impedanc	e@10psi	0.223	A	STM D5470	°C-in²/ W				
Thermal impedanc	e@20psi	0.202	A	STM D5470	°C-in²/ W				
Thermal impedanc	e@30psi	0.140	ASTM D5470		°C-in²/ W				
Thermal impedanc	e@40psi	0.119	ASTM D5470		°C-in²/ W				
Thermal impedanc	e@50psi	0.108	A	STM D5470	°C-in²/ W				
Coefficient of thern	nal expansion	-244.48x10 ⁻⁶	ŀ	ASTM E228	1/K				

THERMAL IMPEDANCE & COMPRESSION

Compression	Therm	al Impedance(°	C-in²/W)	Compression (%)			
Force (psi)	1.0 mm	2.0 mm	3.0 mm	1.0 mm	2.0 mm	3.0 mm	
10	0.223	0.388	0.579	14	15	16	
20	0.202	0.327	0.341	24	34	57	
30	0.140	0.200	0.216	47	60	71	
40	0.119	0.146	0.172	55	69	77	
50	0.108	0.127	0.139	59	73	81	

Test method: ASTM D5470

RELIABILITY

Test	Compression Force (psi)	70°C						
Property		Initial	100 hrs	250 hrs	500 hrs	1000 hrs		
	10	0.223	0.224	0.223	0.224	0.225		
Thermal Resistance	30	0.140	0.141	0.141	0.141	0.142		
Resistance	50	0.108	0.110	0.109	0.109	0.111		

Test Property	Compression Force (psi)	150°C							
		Initial	100 hrs	250 hrs	500 hrs	1000 hrs			
Thermal Resistance	10	0.223	0.224	0.225	0.224	0.225			
	30	0.140	0.142	0.143	0.142	0.143			
	50	0.108	0.110	0.111	0.109	0.108			

Test	Compression Force (psi)	60°C / 90%RH						
Property	Compression roice (psi)	Initial	100 hrs	250 hrs	500 hrs	1000 hrs		
	10	0.223	0.222	0.223	0.222	0.221		
Thermal Resistance	30	0.140	0.141	0.142	0.149	0.141		
Resistance	50	0.108	0.109	0.108	0.108	0.107		

Test Property	Compression Force (psi)	-40°C (30min) ←→ +125°C (30min)							
		0 Cycles	100 Cycles	200 Cycles	300 Cycles	400 Cycles	500 Cycles		
Thermal Resistance	10	0.223	0.223	0.224	0.223	0.224	0.223		
	30	0.140	0.142	0.141	0.142	0.143	0.143		
	50	0.108	0.109	0.110	0.110	0.109	0.110		

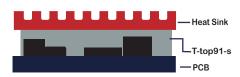
Test Property	Compression Force (psi)	Ultra Low Temperature -60°C							
		Initial	100 hrs	200 hrs	300 hrs	400 hrs	500 hrs		
Thermal Resistance	10	0.223	0.222	0.223	0.223	0.224	0.223		
	30	0.140	0.141	0.142	0.142	0.143	0.141		
	50	0.108	0.111	0.109	0.110	0.109	0.110		

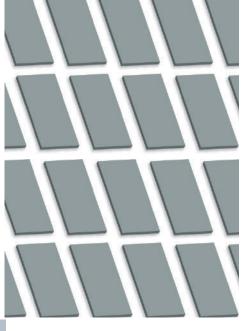
Test method: ASTM D5470 , Specimen thickness = 1.0mm , Unit: °C-in²/W

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the safety before using the material. We strongly recommend the purchaser pre-test the product and verify the performance of the product and the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

T-top91-s

High Thermal Conductive Gap Filler


LiPOLY T-top91-s offers outstanding thermal conductivity at 13.0 W/m*K and extremely low thermal resistance under minimal force. T-top91-s offers excellent compression, filling small air gaps on uneven surfaces, ensuring an efficient and consistent transfer of heat.


FEATURES

/ Thermal conductivity: 13.0 W/m*K/ High compression rate/ Extremely low thermal impedance

TYPICAL APPLICATION

- / Between CPU and heat sink
- / Between a component and heat sink
- / Flat-panel displays
- / Power supplies
- / High speed mass storage drives
- / Telecommunication hardware
- / 5G base station & infrastructure
- / EV electric vehicle

CONSTRUCTION

	TION				
Series		racteristics		Configura	
T-top91-s		compound wi cky surfaces.	th	Sheets fo Die-cuts p	
	ROPERTI	ES			
PROPERTY		T-top91-s	TE	ST METHOD	UNIT
Color		Gray Green		Visual	-
Surface tack 2-side	/1-side	2		-	-
Thickness		Customized	A	STM D374	mm
Density		3.4	A	STM D792	g/cm³
Hardness		65	A	STM D2240	Shore OOC
TML		<0.1		By LiPOLY	%
Application tempera	ature	-60~150		-	°C
ROHS & REACH		Compliant		-	-
COMPRESSION					
Deflection @10 psi		11	AST	/I D5470 modify	%
Deflection @20 psi	38	AST	/I D5470 modify	%	
Deflection @30 psi		59	ASTM D5470 modify		%
Deflection @40 psi		69	AST	/I D5470 modify	%
Deflection @50 psi		76	AST	/I D5470 modify	%
ELECTRICAL					
Dielectric breakdow	'n	8	ASTM D149		KV/mm
Surface resistivity		>1011	A	STM D257	Ohm
Volume resistivity		>1010	A	STM D257	Ohm-m
Dielectric constant@	@10MHz D⊧	9.9	A	STM D150	-
Dielectric constant(@1GHz D⊧	9.8	A	STM D150	-
Dielectric constant@	@1.8GHz D⊧	11.4	A	STM D150	-
Dielectric factor@1	0MHz D _f	0.007	A	STM D150	-
Dielectric factor@1	GHz D _f	0.004	A	STM D150	-
Dielectric factor@1	.8GHz Df	0.024	A	STM D150	-
THERMAL					
Thermal conductivit	ţy	13.0	A	STM D5470	W/m*K
Thermal conductivi	ty	8.0	19	SO 22007-2	W/m*K
Thermal impedance	e@10psi	0.201	ASTM D5470		°C-in²/ W
Thermal impedance	e@20psi	0.159	A	STM D5470	°C-in²/ W
Thermal impedance	e@30psi	0.103	ASTM D5470		°C-in²/ W
Thermal impedance	e@40psi	0.084	ASTM D5470		°C-in²/ W
Thermal impedance	e@50psi	0.075	ASTM D5470		°C-in²/ W
Coefficient of therm	al expansion	-179.04x10⁻⁵	ŀ	ASTM E228	1/K

THERMAL IMPEDANCE & COMPRESSION

Compression	Therma	al Impedance (°	C-in²/W)	Compression (%)			
Force (psi)	1.0 mm	2.0 mm	3.0 mm	1.0 mm	2.0 mm	3.0 mm	
10	0.201	0.355	0.418	11	17	23	
20	0.159	0.290	0.283	38	40	64	
30	0.103	0.169	0.183	59	64	79	
40	0.084	0.141	0.156	69	73	82	
50	0.075	0.118	0.126	76	75	85	

Test method: ASTM D5470

RELIABILITY

Test	Compression Force (psi)	70°C						
Property		Initial	100 hrs	250 hrs	500 hrs	1000 hrs		
Thermal Resistance	10	0.201	0.201	0.201	0.202	0.202		
	30	0.103	0.103	0.104	0.103	0.104		
	50	0.075	0.075	0.075	0.076	0.076		

Test Property	Compression Force (psi)	150°C						
		Initial	100 hrs	250 hrs	500 hrs	1000 hrs		
	10	0.201	0.201	0.202	0.202	0.202		
Thermal Resistance	30	0.103	0.103	0.104	0.103	0.105		
T CSIStance	50	0.075	0.075	0.076	0.077	0.077		

Test Property	Compression Force (psi)	60°C / 90%RH						
		Initial	100 hrs	250 hrs	500 hrs	1000 hrs		
Thermal Resistance	10	0.201	0.201	0.202	0.202	0.202		
	30	0.103	0.103	0.104	0.103	0.104		
	50	0.075	0.075	0.075	0.076	0.076		

Test Property	Compression Force (psi)	-40°C (30min) ←→ +125°C (30min)							
	Compression Force (psi)	0 Cycles	100 Cycles	200 Cycles	300 Cycles	400 Cycles	500 Cycles		
	10	0.201	0.202	0.202	0.203	0.203	0.203		
Thermal Resistance	30	0.103	0.103	0.104	0.104	0.105	0.105		
Tesistarice	50	0.075	0.075	0.075	0.076	0.075	0.076		

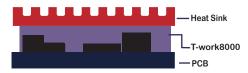
Test Property	Compression Force (psi)	Ultra Low Temperature -60°C						
		Initial	100 hrs	200 hrs	300 hrs	400 hrs	500 hrs	
	10	0.201	0.202	0.202	0.203	0.203	0.202	
Thermal Resistance	30	0.103	0.103	0.103	0.104	0.104	0.104	
Resistance	50	0.075	0.075	0.076	0.076	0.075	0.076	

Test method: ASTM D5470 , Specimen thickness = 1.0mm , Unit: °C-in²/W

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the safety before using the material. We strongly recommend the purchaser pre-test the product and verify the performance of the product and the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

T-work8000

High Thermal Conductive Gap Filler


LiPOLY T-work8000 offers outstanding thermal conductivity at 15.0 W/m*K and extremely low thermal resistance under minimal force. T-work8000 offers excellent compression, filling small air gaps on uneven surfaces, ensuring an efficient and consistent transfer of heat.

FEATURES

/ Thermal conductivity: 15.0 W/m*K/ High compression rate/ Extremely low thermal impedance

TYPICAL APPLICATION

- / Between CPU and heat sink
- / Between a component and heat sink
- / Flat-panel displays
- / Power supplies
- / High speed mass storage drives
- / Telecommunication hardware
- / 5G base station & infrastructure
- / EV electric vehicle

CONSTRUCTION

	CTION					
Series	Char	acteristics		Configura	tions	
T-work8000		compound wi ky surfaces.	th	Sheets fo Die-cuts p	•	
TYPICAL P	ROPERTI	ES				
PROPERTY		T-work8000	TE	ST METHOD	UNIT	
Color		Purple		Visual	-	
Surface tack 2-side	e/1-side	2		-	-	
Thickness		Customized	A	ASTM D374	mm	
Density		3.3	A	ASTM D792	g/cm³	
Hardness		65	A	STM D2240	Shore OOO	
TML		<0.1		By LiPOLY	%	
Application temper	ature	-60~150		-	°C	
ROHS & REACH		Compliant		-	-	
COMPRESSION						
Deflection @10 ps	i	10	AST	A D5470 modify	%	
Deflection @20 ps	42	ASTM D5470 modify		%		
Deflection @30 psi		64	ASTM D5470 modify		%	
Deflection @40 psi		71	AST	A D5470 modify	%	
Deflection @50 psi		79	AST	N D5470 modify	%	
ELECTRICAL						
Dielectric breakdov	wn	8	ASTM D149		KV/mm	
Surface resistivity		>1011	ŀ	ASTM D257	Ohm	
Volume resistivity		>1010	ŀ	ASTM D257	Ohm-m	
Dielectric constant	@10MHz D⊧	9.4	A	ASTM D150	-	
Dielectric constant	@1GHz D⊧	9.3	ŀ	ASTM D150	-	
Dielectric constant	@1.8GHz Dĸ	10.3	A	ASTM D150	-	
Dielectric factor@1	0MHz D _f	0.006	ŀ	ASTM D150	-	
Dielectric factor@1	GHz D _f	0.009	A	ASTM D150	-	
Dielectric factor@1	.8GHz D _f	0.028	A	ASTM D150	-	
THERMAL						
Thermal conductiv	ity	15.0	A	STM D5470	W/m*K	
Thermal conductiv	ity	9.0	18	SO 22007-2	W/m*K	
Thermal impedance	e@10psi	0.185	A	STM D5470	°C-in²/ W	
Thermal impedance	e@20psi	0.122	A	STM D5470	°C-in²/ W	
Thermal impedance	e@30psi	0.074	ASTM D5470		°C-in²/ W	
Thermal impedance	e@40psi	0.054	ASTM D5470		°C-in²/ W	
Thermal impedance	e@50psi	0.046	ASTM D5470		°C-in²/ W	
Coefficient of them	nal expansion	-89.56x10⁻⁵	ļ	ASTM E228	1/K	

THERMAL IMPEDANCE & COMPRESSION

Compression	Thermal I	mpedance (°C-ir	1²/W)	Compression (%)			
Force (psi)	1.0 mm	2.0 mm	3.0 mm	1.0 mm	2.0 mm	3.0 mm	
10	0.185	0.293	0.335	10	20	41	
20	0.122	0.167	0.174	42	60	72	
30	0.074	0.106	0.115	64	74	82	
40	0.054	0.076	0.083	71	82	87	
50	0.046	0.059	0.064	79	86	90	

Test method: ASTM D5470

RELIABILITY

Test Property	Compression Force (psi)	70°C						
		Initial	100 hrs	250 hrs	500 hrs	1000 hrs		
- , ,	10	0.185	0.183	0.184	0.185	0.187		
Thermal Resistance	30	0.074	0.076	0.076	0.075	0.077		
1 (CSIStarioc	50	0.046	0.048	0.047	0.046	0.048		

Test Property	Compression Force (psi)	150°C						
		Initial	100 hrs	250 hrs	500 hrs	1000 hrs		
- , ,	10	0.185	0.186	0.187	0.186	0.187		
Thermal Resistance	30	0.074	0.076	0.077	0.077	0.078		
	50	0.046	0.048	0.047	0.047	0.048		

Test	Compression Force (psi)	60°C / 90%RH						
Property	Compression rorce (psr)	Initial	100 hrs	250 hrs	500 hrs	1000 hrs		
	10	0.185	0.186	0.185	0.184	0.183		
Thermal Resistance	30	0.074	0.076	0.077	0.076	0.075		
Resistance	50	0.046	0.047	0.046	0.045	0.045		

Test		-40°C (30min) ←→ +125°C (30min)						
Property	Compression Force (psi)	0 Cycles	100 Cycles	200 Cycles	300 Cycles	400 Cycles	500 Cycles	
	10	0.185	0.183	0.184	0.186	0.185	0.186	
Thermal Resistance	30	0.074	0.073	0.074	0.077	0.076	0.076	
Redictance	50	0.046	0.047	0.045	0.048	0.047	0.047	

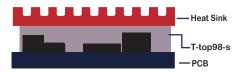
Test	(Compression Force (nei)	Ultra Low Temperature -60°C						
Property		Initial	100 hrs	200 hrs	300 hrs	400 hrs	500 hrs	
	10	0.185	0.186	0.185	0.184	0.185	0.186	
Thermal Resistance	30	0.074	0.075	0.075	0.073	0.074	0.075	
Resistance	50	0.046	0.047	0.046	0.045	0.047	0.047	

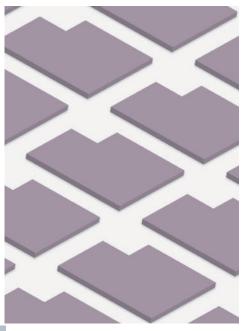
Test method: ASTM D5470 , Specimen thickness = 1.0mm , Unit: °C-in²/W

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the safety before using the material. We strongly recommend the purchaser pre-test the product and verify the performance of the product and the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

T-top98-s

High Thermal Conductive Gap Filler


LiPOLY T-top98-s offers outstanding thermal conductivity at 18.0 W/m*K and extremely low thermal resistance under minimal force. T-top98-s offers excellent compression, filling small air gaps on uneven surfaces, ensuring an efficient and consistent transfer of heat.


FEATURES

/ Thermal conductivity: 18.0 W/m*K / High compression rate / Extremely low thermal impedance

TYPICAL APPLICATION

- / Between CPU and heat sink
- / Between a component and heat sink
- / Flat-panel displays
- / Power supplies
- / High speed mass storage drives
- / Telecommunication hardware
- / 5G base station & infrastructure
- / EV electric vehicle

NETDUCTION

	CTION					
Series	Chai	racteristics		Configura	tions	
T-top98-s		compound with Sheets cky surfaces. Die-cut				
TYPICAL P	ROPERTI	ES				
PROPERTY		T-top98-s	TE	ST METHOD	UNIT	
Color		Purple		Visual	-	
Surface tack 2-side	e/1-side	2		-	-	
Thickness		Customized	ŀ	ASTM D374	mm	
Density		3.3	ŀ	ASTM D792	g/cm³	
Hardness		65	A	STM D2240	Shore OOO	
TML		<0.1		By LiPOLY	%	
Application temper	ature	-60~150		-	°C	
ROHS & REACH		Compliant		-	-	
COMPRESSION						
Deflection @10 ps	i	11	AST	A D5470 modify	%	
Deflection @20 ps	Deflection @20 psi			A D5470 modify	%	
Deflection @30 ps	i	62	ASTM D5470 modify		%	
Deflection @40 psi		71	AST	A D5470 modify	%	
Deflection @50 ps	Deflection @50 psi		AST	A D5470 modify	%	
ELECTRICAL						
Dielectric breakdow	wn	8	ASTM D149		KV/mm	
Surface resistivity		>1011	ASTM D257		Ohm	
Volume resistivity		>1010	A	ASTM D257	Ohm-m	
Dielectric constant	@10MHz D⊧	10.0	A	ASTM D150	-	
Dielectric constant	@1GHz D⊧	9.9	A	ASTM D150	-	
Dielectric constant	@1.8GHz D⊧	10.3	A	ASTM D150	-	
Dielectric factor@1	0MHz D _f	0.003	A	ASTM D150	-	
Dielectric factor@1	GHz D _f	0.007	ŀ	ASTM D150	-	
Dielectric factor@1	.8GHz Df	0.025	A	ASTM D150	-	
THERMAL						
Thermal conductivi	ity	18.0	A	STM D5470	W/m*K	
Thermal conductiv	ity	10.5	1	SO 22007-2	W/m*K	
Thermal impedanc	e@10psi	0.149	A	STM D5470	°C-in²/ W	
Thermal impedanc	e@20psi	0.104	ASTM D5470		°C-in²/ W	
Thermal impedanc	e@30psi	0.061	ASTM D5470		°C-in²/ W	
Thermal impedanc	e@40psi	0.046	A	STM D5470	°C-in²/ W	
Thermal impedanc	e@50psi	0.039	A	STM D5470	°C-in²/ W	
Coefficient of them	nal expansion	-312.13x10⁻⁵	Å	ASTM E228	1/K	

THERMAL IMPEDANCE & COMPRESSION

Compression	Thermal Impedance (°C-in²/W)			Compression (%)			
Force (psi)	1.0 mm	2.0 mm	3.0 mm	1.0 mm	2.0 mm	3.0 mm	
10	0.149	0.247	0.304	11	20	39	
20	0.104	0.138	0.156	38	58	71	
30	0.061	0.085	0.080	62	75	82	
40	0.046	0.064	0.065	71	83	87	
50	0.039	0.046	0.054	77	86	90	

Test method: ASTM D5470

RELIABILITY

Test	Compression Force (psi)	70°C							
Property		Initial	100 hrs	250 hrs	500 hrs	1000 hrs			
Thermal Resistance	10	0.149	0.148	0.149	0.148	0.149			
	30	0.061	0.061	0.061	0.062	0.062			
	50	0.039	0.039	0.038	0.038	0.039			

Test	Compression Force (noi)	150°C						
Property	Compression Force (psi)	Initial	100 hrs	250 hrs	500 hrs	1000 hrs		
Thermal Resistance	10	0.149	0.148	0.149	0.149	0.150		
	30	0.061	0.061	0.061	0.062	0.062		
	50	0.039	0.039	0.039	0.040	0.040		

Test	Compression Force (psi)	60°C / 90%RH						
Property		Initial	100 hrs	250 hrs	500 hrs	1000 hrs		
Thermal Resistance	10	0.149	0.148	0.149	0.148	0.149		
	30	0.061	0.061	0.060	0.061	0.061		
	50	0.039	0.039	0.038	0.040	0.040		

Test	Compression Force (psi)	-40°C (30min) ←→ +125°C (30min)						
Property	, Compression roice (psi)	0 Cycles	100 Cycles	200 Cycles	300 Cycles	400 Cycles	500 Cycles	
	10	0.149	0.148	0.149	0.148	0.149	0.148	
Thermal Resistance	30	0.061	0.060	0.061	0.060	0.061	0.061	
	50	0.039	0.038	0.039	0.038	0.038	0.039	

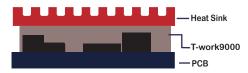
Test	Compression Force (psi)	Ultra Low Temperature -60°C						
Property	erty Compression Force (psi)	Initial	100 hrs	200 hrs	300 hrs	400 hrs	500 hrs	
	10	0.149	0.148	0.148	0.148	0.149	0.149	
Thermal Resistance	30	0.061	0.060	0.061	0.060	0.061	0.061	
1 Colotanoc	50	0.039	0.039	0.038	0.039	0.040	0.040	

Test method: ASTM D5470 , Specimen thickness = 1.0mm , Unit: °C-in²/W

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the safety before using the material. We strongly recommend the purchaser pre-test the product and verify the performance of the product and the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

T-work9000

High Thermal Conductive Gap Filler


LiPOLY T-work9000 offers outstanding thermal conductivity at 20.0 W/m*K and extremely low thermal resistance under minimal force. T-work9000 offers excellent compression, filling small air gaps on uneven surfaces, ensuring an efficient and consistent transfer of heat.

FEATURES

/ Thermal conductivity: 20.0 W/m*K/ High compression rate/ Extremely low thermal impedance

TYPICAL APPLICATION

- / Between CPU and heat sink
- / Between a component and heat sink
- / Flat-panel displays
- / Power supplies
- / High speed mass storage drives
- / Telecommunication hardware
- / 5G base station & infrastructure
- / EV electric vehicle

CONSTRUCTION

Series	Characteristics	Configurations
T-work9000	Silicone compound with weak sticky surfaces.	Sheets form, Die-cuts parts
TYPICAL P	ROPERTIES	

PROPERTY	T-work9000	TEST METHOD	UNIT
Color	Brown	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	3.3	ASTM D792	g/cm³
Hardness	65	ASTM D2240	Shore OOO
TML	<0.1	By LiPOLY	%
Application temperature	-60~150	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION	1		
Deflection @10 psi	12	ASTM D5470 modify	%
Deflection @20 psi	27	ASTM D5470 modify	%
Deflection @30 psi	58	ASTM D5470 modify	%
Deflection @40 psi	71	ASTM D5470 modify	%
Deflection @50 psi	74	ASTM D5470 modify	%
ELECTRICAL	1		
Dielectric breakdown	8	ASTM D149	KV/mm
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
Dielectric constant@10MHz Dk	10.5	ASTM D150	-
Dielectric constant@1GHz Dk	10.4	ASTM D150	-
Dielectric constant@1.8GHz Dk	11.2	ASTM D150	-
Dielectric factor@10MHz Df	0.001	ASTM D150	-
Dielectric factor@1GHz D _f	0.006	ASTM D150	-
Dielectric factor@1.8GHz D _f	0.022	ASTM D150	-
THERMAL	1		
Thermal conductivity	20.0	ASTM D5470	W/m*K
Thermal conductivity	12.0	ISO 22007-2	W/m*K
Thermal impedance@10psi	0.110	ASTM D5470	°C-in²/ W
Thermal impedance@20psi	0.088	ASTM D5470	°C-in²/ W
Thermal impedance@30psi	0.050	ASTM D5470	°C-in²/ W
Thermal impedance@40psi	0.037	ASTM D5470	°C-in²/ W
Thermal impedance@50psi	0.031	ASTM D5470	°C-in²/ W
Coefficient of thermal expansion	-538.70x10 ⁻⁶	ASTM E228	1/K

THERMAL IMPEDANCE & COMPRESSION

Compression	Thermal Impedance (°C-in²/W)			Compression (%)			
Force (psi)	1.0 mm	2.0 mm	3.0 mm	1.0 mm	2.0 mm	3.0 mm	
10	0.110	0.201	0.255	12	21	31	
20	0.088	0.105	0.120	27	55	68	
30	0.050	0.056	0.064	58	78	83	
40	0.037	0.039	0.042	71	85	89	
50	0.031	0.033	0.035	74	86	90	

Test method: ASTM D5470

RELIABILITY

Test	Compression Force (psi)	70°C					
Property	Compression Force (psi)	Initial	100 hrs	250 hrs	500 hrs	1000 hrs	
T he sum of t	10	0.110	0.111	0.112	0.112	0.113	
Thermal Resistance	30	0.050	0.051	0.052	0.052	0.053	
	50	0.031	0.031	0.032	0.032	0.033	

Test	Compression Force (psi)	150°C					
Property		Initial	100 hrs	250 hrs	500 hrs	1000 hrs	
	10	0.110	0.111	0.112	0.113	0.113	
Thermal Resistance	30	0.050	0.051	0.052	0.053	0.053	
Resistance	50	0.031	0.032	0.032	0.033	0.033	

Test	Compression Force (psi)	60°C / 90%RH					
Property	Compression Force (psi)	Initial	100 hrs	250 hrs	500 hrs	1000 hrs	
T he sum of t	10	0.110	0.111	0.112	0.113	0.113	
Thermal Resistance	30	0.050	0.051	0.052	0.053	0.053	
Resistance	50	0.031	0.032	0.032	0.033	0.033	

Test	Compression Force (psi)	-40°C (30min) ←→ +125°C (30min)					
Property		0 Cycles	100 Cycles	200 Cycles	300 Cycles	400 Cycles	500 Cycles
	10	0.110	0.110	0.111	0.112	0.113	0.113
Thermal Resistance	30	0.050	0.050	0.051	0.052	0.052	0.053
	50	0.031	0.032	0.031	0.032	0.032	0.033

Test	Compression Force (psi)	Ultra Low Temperature -60°C					
Property		Initial	100 hrs	200 hrs	300 hrs	400 hrs	500 hrs
	10	0.110	0.110	0.111	0.110	0.111	0.110
Thermal Resistance	30	0.050	0.051	0.050	0.051	0.050	0.050
Resistance	50	0.031	0.031	0.032	0.032	0.032	0.031

Test method: ASTM D5470 , Specimen thickness = 1.0mm , Unit: °C-in²/W

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the safety before using the material. We strongly recommend the purchaser pre-test the product and verify the performance of the product and the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

Thermal Conductive Gel Pad

LiPOLY PK223 is a material designed for gap filling. The thermal conductivity is 2.0 W/m*K. The hardness is Shore OO/30 with high flexibility, high compressibility, high insulating, great self-adhesive, which can cover the tolerance of design making it very stable. It also offers customized shape molding service.

FEATURES

- / Thermal conductivity: 2.0 W/m*K
- / Naturally tacky for ease of manufacture
- / Low thermal impedance
- / Available in a range of thicknesses

TYPICAL APPLICATION

/ Notebook computers

- / Heat pipe assemblies
- / Memory modules
- / TV hardware
- / Automotive electronics
- / Mobile devices
- / High speed mass storage drives
- / Set-top box
- / IP CAM
- / 5G base station & infrastructure / EV electric vehicle

SPECIFICATIONS

/ Sheet form / Die-cut parts


19

TYPICAL PROPERTIES

PROPERTY	PK223	TEST METHOD	UNIT
Color	White	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	2.1	ASTM D792	g/cm³
Hardness	30	ASTM D2240	Shore OO
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	33	ASTM D5470 modify	%
Deflection @20 psi	38	ASTM D5470 modify	%
Deflection @30 psi	42	ASTM D5470 modify	%
Deflection @40 psi	45	ASTM D5470 modify	%
Deflection @50 psi	48	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	11	ASTM D149	KV/mm
Surface resistivity	>1010	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	2.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.711	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.664	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.633	ASTM D5470	°C-in²/W
Thermal impedance@40 psi	0.595	ASTM D5470	°C-in²/ W
Thermal impedance@50 psi	0.572	ASTM D5470	°C-in²/ W

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the performance of the product naver's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All ripots reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

Thermal Conductive Gel Pad

LiPOLY PK404 is a material designed for gap filling. The thermal conductivity is 4.0 W/m*K. The hardness is Shore OO/30 with high flexibility, high compressibility, high insulating, great self-adhesive, which can cover the tolerance of design making it very stable. It also offers customized shape molding service.

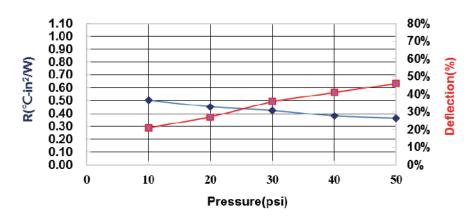
FEATURES

- / Thermal conductivity: 4.0 W/m*K
- / Naturally tacky for ease of manufacture
- / Low thermal impedance
- / Available in a range of thicknesses

TYPICAL APPLICATION

- / Notebook computers
- / Heat pipe assemblies
- / Memory modules
- / TV hardware
- / Automotive electronics
- / Mobile devices
- / High speed mass storage drives
- / Set-top box
- / IP CAM
- / 5G base station & infrastructure / EV electric vehicle

SPECIFICATIONS


/ Sheet form / Die-cut parts

TYPICAL PROPERTIES

PROPERTY	PK404	TEST METHOD	UNIT
Color	Blue	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	2.8	ASTM D792	g/cm³
Hardness	30	ASTM D2240	Shore OO
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	21	ASTM D5470 modify	%
Deflection @20 psi	27	ASTM D5470 modify	%
Deflection @30 psi	36	ASTM D5470 modify	%
Deflection @40 psi	41	ASTM D5470 modify	%
Deflection @50 psi	46	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	12	ASTM D149	KV/mm
Surface resistivity	>1010	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	4.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.502	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.452	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.423	ASTM D5470	°C-in²/ W
Thermal impedance@40 psi	0.380	ASTM D5470	°C-in²/ W
Thermal impedance@50 psi	0.361	ASTM D5470	°C-in²/ W
			L

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the start werfy the safety before using the material. We strongly recommend the purchaser pretest the product and verify the performance of the product there's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LIPOLY products are sold in accordance with the LIPOLY Terms and Conditions to the first of the und purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LIPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LIPOLY.

Thermal Conductive Gel Pad

LiPOLY PK504 is a material designed for gap filling. The thermal conductivity is 5.0 W/m*K. The hardness is Shore OO/50 with high flexibility, high compressibility, high insulating, great self-adhesive, which can cover the tolerance of design making it very stable. It also offers customized shape molding service.

FEATURES

- / Thermal conductivity: 5.0 W/m*K
- / Naturally tacky for ease of manufacture
- / Low thermal impedance
- / Available in a range of thicknesses

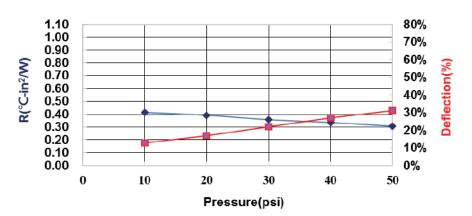
TYPICAL APPLICATION

/ Notebook computers

- / Heat pipe assemblies
- / Memory modules
- / TV hardware
- / Automotive electronics
- / Mobile devices
- / High speed mass storage drives
- / Set-top box
- / IP CAM
- / 5G base station & infrastructure / EV electric vehicle

SPECIFICATIONS

/ Sheet form


/ Die-cut parts

TYPICAL PROPERTIES

PROPERTY	PK504	TEST METHOD	UNIT
Color	Gray	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	3.0	ASTM D792	g/cm³
Hardness	50	ASTM D2240	Shore OO
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	13	ASTM D5470 modify	%
Deflection @20 psi	17	ASTM D5470 modify	%
Deflection @30 psi	22	ASTM D5470 modify	%
Deflection @40 psi	27	ASTM D5470 modify	%
Deflection @50 psi	31	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	12	ASTM D149	KV/mm
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	5.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.415	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.393	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.358	ASTM D5470	°C-in²/ W
Thermal impedance@40 psi	0.336	ASTM D5470	°C-in²/ W
Thermal impedance@50 psi	0.307	ASTM D5470	°C-in²/ W
	1	I	1

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the performance of the product naver's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All ripots reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

ce. The test methods used by LiPOLY are based on the TIM Tester r

Thermal Conductive Gel Pad

LiPOLY PK605 is a material designed for gap filling. The thermal conductivity is 6.0 W/m*K. The hardness is Shore OO/60 with high flexibility, high compressibility, high insulating, great self-adhesive, which can cover the tolerance of design making it very stable. It also offers customized shape molding service.

FEATURES

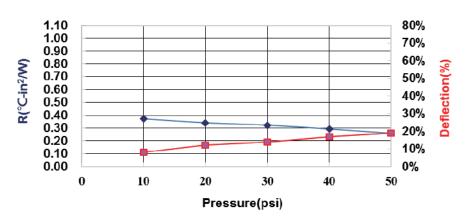
- / Thermal conductivity: 6.0 W/m*K
- / Naturally tacky for ease of manufacture
- / Low thermal impedance
- / Available in a range of thicknesses

TYPICAL APPLICATION

/ Notebook computers

- / Heat pipe assemblies
- / Memory modules
- / TV hardware
- / Automotive electronics
- / Mobile devices
- / High speed mass storage drives
- / Set-top box
- / IP CAM
- / 5G base station & infrastructure / EV electric vehicle

SPECIFICATIONS


/ Sheet form / Die-cut parts

TYPICAL PROPERTIES

PROPERTY	PK605	TEST METHOD	UNIT
Color	Red	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	3.2	ASTM D792	g/cm³
Hardness	60	ASTM D2240	Shore OO
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	8	ASTM D5470 modify	%
Deflection @20 psi	12	ASTM D5470 modify	%
Deflection @30 psi	14	ASTM D5470 modify	%
Deflection @40 psi	17	ASTM D5470 modify	%
Deflection @50 psi	19	ASTM D5470 modify	%
ELECTRICAL	1		
Dielectric breakdown	12	ASTM D149	KV/mm
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	6.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.371	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.341	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.323	ASTM D5470	°C-in²/ W
Thermal impedance@40 psi	0.294	ASTM D5470	°C-in²/ W
Thermal impedance@50 psi	0.262	ASTM D5470	°C-in²/ W

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The protest methods are used as the definition standards for LiPOLY. Safety before using the material. We strongly recommend the purchaser pretest the product and verify the performance of the product therefore the product and verify the product and verify the performance of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LIPOLY products are sold in accordance with the LIPOLY Terms and Conditions in effect at the time of purchases and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LIPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LIPOLY.

Thermal Conductive Gel Pad

LiPOLY PK700 is a material designed for gap filling. The thermal conductivity is 7.0 W/m*K. The hardness is Shore OO/55 with high flexibility, high compressibility, high insulating, great self-adhesive, which can cover the tolerance of design making it very stable. It also offers customized shape molding service.

FEATURES

- / Thermal conductivity: 7.0 W/m*K
- / Naturally tacky for ease of manufacture
- / Low thermal impedance
- / Available in a range of thicknesses

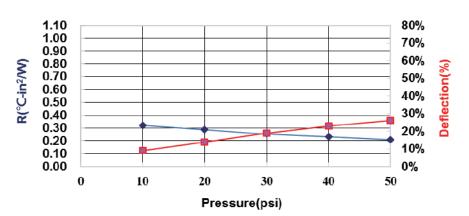
TYPICAL APPLICATION

/ Notebook computers

- / Heat pipe assemblies
- / Memory modules
- / TV hardware
- / Automotive electronics
- / Mobile devices
- / High speed mass storage drives
- / Set-top box
- / IP CAM
- / 5G base station & infrastructure / EV electric vehicle

SPECIFICATIONS

/ Sheet form


/ Die-cut parts

TYPICAL PROPERTIES

PROPERTY	PK700	TEST METHOD	UNIT
Color	Gray	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	3.3	ASTM D792	g/cm³
Hardness	55	ASTM D2240	Shore OO
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	9	ASTM D5470 modify	%
Deflection @20 psi	14	ASTM D5470 modify	%
Deflection @30 psi	19	ASTM D5470 modify	%
Deflection @40 psi	23	ASTM D5470 modify	%
Deflection @50 psi	26	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	12	ASTM D149	KV/mm
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	7.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.321	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.288	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.254	ASTM D5470	°C-in²/ W
Thermal impedance@40 psi	0.233	ASTM D5470	°C-in²/ W
Thermal impedance@50 psi	0.210	ASTM D5470	°C-in²/W

Thermal Resistance vs. Pressure vs. Deflection

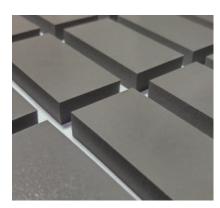
Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the performance of the product naver's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All ripots reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

Exceptionally Soft Thermal Conductive Gel Pad

LiPOLY BS75K is an ultra-soft thermally conductive gel pad with a thermal conductivity of 3.0 W/m*K.BS75K offers excellent compression under minimal force with high recovery characteristics. This product can be supplied as standard sheets, custom die-cuts or custom molded parts.

FEATURES

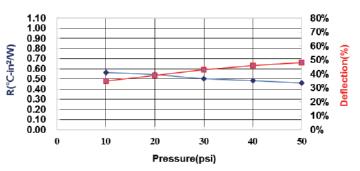
- / Thermal conductivity: 3.0 W/m*K
- / High compression rate
- / Low thermal impedance
- / High recovery
- / Available in a range of thicknesses


TYPICAL APPLICATION

- / Between CPU and heat sink
- / Between a component and heat sink
- / Notebook computers
- / Power supplies
- / High speed mass storage drives
- / Telecommunication hardware
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS

/ Sheet form / Die-cut parts



TYPICAL PROPERTIES

PROPERTY	BS75K	TEST METHOD	UNIT
Color	Dark Gray	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	2.6	ASTM D792	g/cm³
Hardness	18	ASTM D2240	Shore OO
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	35	ASTM D5470 modify	%
Deflection @20 psi	39	ASTM D5470 modify	%
Deflection @30 psi	43	ASTM D5470 modify	%
Deflection @40 psi	46	ASTM D5470 modify	%
Deflection @50 psi	48	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	12	ASTM D149	KV/mm
Surface resistivity	>1010	ASTM D257	Ohm
Volume resistivity	>1011	ASTM D257	Ohm-m
THERMAL	1		'
Thermal conductivity	3.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.562	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.543	ASTM D5470	°C-in²/W
Thermal impedance@30 psi	0.504	ASTM D5470	°C-in²/W
Thermal impedance@40 psi	0.485	ASTM D5470	°C-in²/W
Thermal impedance@50 psi	0.463	ASTM D5470	°C-in²/ W

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The protest methods are used as the definition standards for LiPOLY. Safety before using the material. We strongly recommend the purchaser pretest the product and verify the performance of the product therefore the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LIPOLY products are sold in accordance with the LIPOLY Terms and Conditions in effect at the time of purchases and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LIPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LIPOLY.

BS87-s

Exceptionally Soft Thermal Conductive Gel Pad

LiPOLY BS87-s is an ultra-soft thermally conductive gel pad with a thermal conductivity of 3.0 W/m*K.BS87-s offers excellent compression under minimal force with high recovery characteristics. This product can be supplied as standard sheets, custom die-cuts or custom molded parts.

FEATURES

- / Thermal conductivity: 3.0 W/m*K
- / High compression rate
- / Low thermal impedance
- / High recovery
- / Available in a range of thicknesses

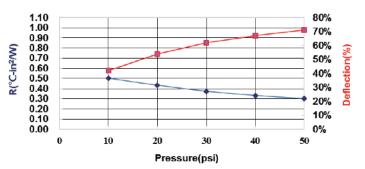
TYPICAL APPLICATION

- / Between CPU and heat sink
- / Between a component and heat sink
- / Notebook computers
- / Power supplies
- / High speed mass storage drives
- / Telecommunication hardware
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS

/ Sheet form / Die-cut parts

25



TYPICAL PROPERTIES

PROPERTY	BS87-s	TEST METHOD	UNIT
Color	Gray	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	2.8	ASTM D792	g/cm³
Hardness	10	ASTM D2240	Shore OO
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	42	ASTM D5470 modify	%
Deflection @20 psi	54	ASTM D5470 modify	%
Deflection @30 psi	62	ASTM D5470 modify	%
Deflection @40 psi	67	ASTM D5470 modify	%
Deflection @50 psi	71	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	12	ASTM D149	KV/mm
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	3.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.502	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.433	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.374	ASTM D5470	°C-in²/W
Thermal impedance@40 psi	0.332	ASTM D5470	°C-in²/ W
Thermal impedance@50 psi	0.301	ASTM D5470	°C-in²/ W
	1		1

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the performance of the product naver's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All ripots reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

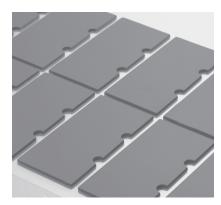
BS89

Exceptionally Soft Thermal Conductive Gel Pad

LiPOLY BS89 is an ultra-soft thermally conductive gel pad with a thermal conductivity of 5.0 W/m*K.BS89 offers excellent compression under minimal force with high recovery characteristics. This product can be supplied as standard sheets, custom die-cuts or custom molded parts.

FEATURES

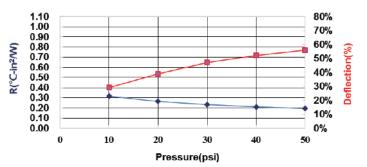
- / Thermal conductivity: 5.0 W/m*K
- / High compression rate
- / Low thermal impedance
- / High recovery
- / Available in a range of thicknesses


TYPICAL APPLICATION

- / Between CPU and heat sink
- / Between a component and heat sink
- / Notebook computers
- / Power supplies
- / High speed mass storage drives
- / Telecommunication hardware
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS

/ Sheet form / Die-cut parts



TYPICAL PROPERTIES

PROPERTY	BS89	TEST METHOD	UNIT
Color	Gray	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	3.0	ASTM D792	g/cm³
Hardness	25	ASTM D2240	Shore OO
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	29	ASTM D5470 modify	%
Deflection @20 psi	39	ASTM D5470 modify	%
Deflection @30 psi	47	ASTM D5470 modify	%
Deflection @40 psi	52	ASTM D5470 modify	%
Deflection @50 psi	56	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	12	ASTM D149	KV/mm
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	5.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.318	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.266	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.233	ASTM D5470	°C-in²/W
Thermal impedance@40 psi	0.211	ASTM D5470	°C-in²/W
Thermal impedance@50 psi	0.194	ASTM D5470	°C-in²/W

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The protest methods are used as the definition standards for LiPOLY. Safety before using the material. We strongly recommend the purchaser pretest the product and verify the performance of the product therefore the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LIPOLY products are sold in accordance with the LIPOLY Terms and Conditions in effect at the time of purchases and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LIPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LIPOLY.

S282-s

Exceptionally Soft Thermal Conductive Gel Pad

LiPOLY S282-s is a thermally conductive pad designed for gap filling. The thermal conductivity is 2.5 W/m*K. Using fiberglass reinforced layer and great self-adhesive which can fit closely with non-flat heat sinks to increase the contact area. S282-s is an excellent insulating material with characteristics of low stress damped vibration and shock absorption.

FEATURES

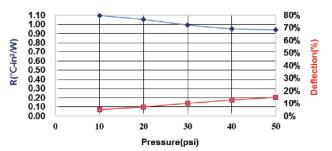
- / Thermal conductivity: 2.5 W/m*K
- / Designed for manufacturing
- / High dielectric breakdown/ Shock and vibration absorber
- / Good mechanical strength
- / Good mechanical streng
- / Fiberglass reinforced

TYPICAL APPLICATION

/ Between a component and heat sink
/ Flat-panel displays
/ LED, HDDs, DVDs
/ Heat pipe assemblies
/ Memory modules
/ Power supplies
/ 5G base station & infrastructure
/ EV electric vehicle

SPECIFICATION

/ Sheet form / Die-cut parts



TYPICAL PROPERTIES

PROPERTY	S282-s	TEST METHOD	UNIT
Color	Pink	Visual	-
Surface tack 2-side/1-side	1	-	-
Reinforced layer	Fiberglass	-	-
Thickness	Customized	ASTM D374	mm
Density	2.6	ASTM D792	g/cm³
Hardness	18	ASTM D2240	Shore OO
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	5	ASTM D5470 modify	%
Deflection @20 psi	7	ASTM D5470 modify	%
Deflection @30 psi	10	ASTM D5470 modify	%
Deflection @40 psi	13	ASTM D5470 modify	%
Deflection @50 psi	15	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	12	ASTM D149	KV/mm
Surface resistivity	>1010	ASTM D257	Ohm
Volume resistivity	>1011	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	2.5	ASTM D5470	W/m*K
Thermal impedance@10 psi	1.094	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	1.052	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.993	ASTM D5470	°C-in²/ W
Thermal impedance@40 psi	0.952	ASTM D5470	°C-in²/ W
Thermal impedance@50 psi	0.941	ASTM D5470	°C-in²/ W

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the performance of the product naver's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All ripots reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

AS200-s

Ultra Low Oil-Bleed Thermal Conductive Gel Pad

LiPOLY AS200-s is a material designed for gap filling. The thermal conductivity is 2.0 W/m*K. The hardness is Shore OO/35, with high flexibility and compressibility. AS200-s has ultra-low oil bleeding properties, which helps reduce pollutants from silicon oil, keeping electronic components clean.

FEATURES

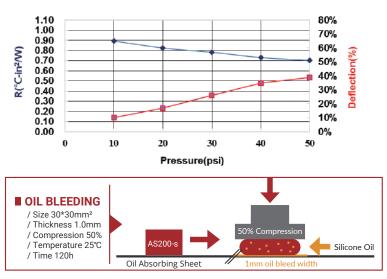
- / Thermal conductivity:2.0 W/m*K
- / High compressibility
- / Low oil-bleeding
- / Naturally tacky and high resilience

TYPICAL APPLICATION

- / Notebook computers
 / Heat pipe assemblies
 / TV hardware
 / Wireless communication hardware
 / High speed mass storage drives
 / Set top box
 / IP CAM
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS

/ Sheet form



TYPICAL PROPERTIES

PROPERTY	AS200-s	TEST METHOD	UNIT
Color	Gray	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	2.2	ASTM D792	g/cm³
Hardness	35	ASTM D2240	Shore OO
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	10	ASTM D5470 modify	%
Deflection @20 psi	17	ASTM D5470 modify	%
Deflection @30 psi	26	ASTM D5470 modify	%
Deflection @40 psi	35	ASTM D5470 modify	%
Deflection @50 psi	39	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	12	ASTM D149	KV/mm
Surface resistivity	>1010	ASTM D257	Ohm
Volume resistivity	>1011	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	2.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.892	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.824	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.783	ASTM D5470	°C-in²/ W
Thermal impedance@40 psi	0.731	ASTM D5470	°C-in²/ W
Thermal impedance@50 psi	0.704	ASTM D5470	°C-in²/ W

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The protest methods are used as the definition standards for LiPOLY. Safety before using the material. We strongly recommend the purchaser pretest the product and verify the performance of the product therefore the product and verify the product and verify the performance of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LIPOLY products are sold in accordance with the LIPOLY Terms and Conditions in effect at the time of purchases and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LIPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LIPOLY.

AS400-s

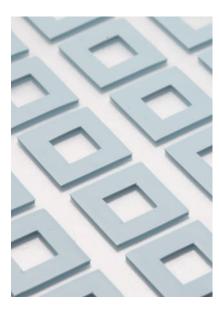
Ultra Low Oil-Bleed Thermal Conductive Gel Pad

LiPOLY AS400-s is a material designed for gap filling. The thermal conductivity is 4.0 W/m*K. The hardness is Shore OO/45, with high flexibility and compressibility. AS400-s has ultra-low oil bleeding properties, which helps reduce pollutants from silicon oil, keeping electronic components clean.

FEATURES

- / Thermal conductivity:4.0 W/m*K
- / High compressibility
- / Low oil-bleeding
- / Naturally tacky and high resilience

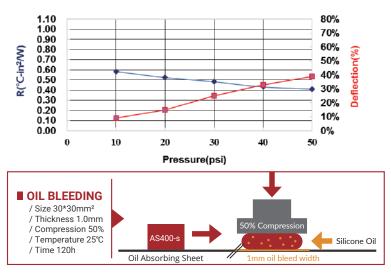
TYPICAL APPLICATION


/ Notebook computers
/ Heat pipe assemblies
/ TV hardware
/ Wireless communication hardware
/ High speed mass storage drives
/ Set top box
/ IP CAM
/ 5G base station & infrastructure
/ EV electric vehicle

SPECIFICATIONS

/ Sheet form

29


/ Die-cut parts

TYPICAL PROPERTIES

PROPERTY	AS400-s	TEST METHOD	UNIT
Color	Blue	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	2.6	ASTM D792	g/cm³
Hardness	45	ASTM D2240	Shore OO
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	9	ASTM D5470 modify	%
Deflection @20 psi	15	ASTM D5470 modify	%
Deflection @30 psi	25	ASTM D5470 modify	%
Deflection @40 psi	33	ASTM D5470 modify	%
Deflection @50 psi	39	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	12	ASTM D149	KV/mm
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	4.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.582	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.525	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.483	ASTM D5470	°C-in²/ W
Thermal impedance@40 psi	0.431	ASTM D5470	°C-in²/ W
Thermal impedance@50 psi	0.411	ASTM D5470	°C-in²/ W

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the performance of the product naver's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All ripots reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

N700A

Non-Silicone Thermal Conductive Pad

Non-Silicone Thermal Compound N700A is made of non-silicon resin material. No low molecular siloxane volatilization and low total volatile gas, no electrical contact & pollution problems. N700A is flexible and has great thermal conduction, Low compressive stress and high compressive characteristics can effectively reduce the stress load of components, so that the equipment only needs to bear less mechanical stress, and at the same time, it can have low thermal resistance and high thermal conductivity.

FEATURES

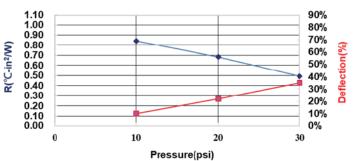
- / Thermal conductivity:2.5 W/m*K / It's made by non-silicone resin
- materials
- / Low contact thermal resistance
- / With electrical insulation
- / Outstanding thermal conductivity / Applicable to optical and
- sensitive electric components

TYPICAL APPLICATION

- / HDDS
- / Optical appliance
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS

- / Sheet form
- / Die-cut parts



TYPICAL PROPERTIES

PROPERTY	N700A	TEST METHOD	UNIT
Color	Gray	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	2.4	ASTM D792	g/cm³
Hardness	60	ASTM D2240	Shore OO
Tensile Strength	1.0	ASTM D412	Kgf/cm ²
Application temperature	-60~125	-	°C
Low molecular Siloxane (D3 to D20 total)	N.D	Gas Chromatography	%
Outgassing CVCM (wt%)	0.0079	By LiPOLY	-
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	10	ASTM D5470 modify	%
Deflection @20 psi	22	ASTM D5470 modify	%
Deflection @30 psi	35	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	16	ASTM D149	KV/mm
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	2.5	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.841	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.682	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.494	ASTM D5470	°C-in²/ W
Thermal impedance@40 psi	0.315	ASTM D5470	°C-in²/W
Thermal impedance@50 psi	0.217	ASTM D5470	°C-in²/W

The chemical formula indicates that if Cyclic polydimethylsilox-ane (HO-[Si(CH3)2O]n-H) is non-reaction, it's volatile anytime and everywhere. For example, when the electric products which has been put in a confined space, the volatile of low-molecular-weight silox-anes will makes the elecetic products uncontacted.

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The protest methods are used as the definition standards for LiPOLY. Safety before using the material. We strongly recommend the purchaser pretest the product and verify the performance of the product therefore the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LIPOLY products are sold in accordance with the LIPOLY Terms and Conditions in effect at the time of purchases and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LIPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LIPOLY.

N700B

Non-Silicone Thermal Conductive Pad

Non-Silicone Thermal Compound N700B is made of non-silicon resin material. No low molecular siloxane volatilization and low total volatile gas, no electrical contact & pollution problems. N700B is flexible and has great thermal conduction, Low compressive stress and high compressive characteristics can effectively reduce the stress load of components, so that the equipment only needs to bear less mechanical stress, and at the same time, it can have low thermal resistance and high thermal conductivity.

FEATURES

/ Thermal conductivity:3.0 W/m*K

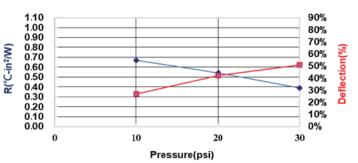
- / It's made by non-silicone resin materials
- / Low contact thermal resistance
- / With electrical insulation
- / Outstanding thermal conductivity/ Applicable to optical and
- sensitive electric components

TYPICAL APPLICATION

- / HDDS
- / Optical appliance
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS

- / Sheet form
- / Die-cut parts



TYPICAL PROPERTIES

PROPERTY	N700B	TEST METHOD	UNIT
Color	Red	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	2.6	ASTM D792	g/cm³
Hardness	60	ASTM D2240	Shore OO
Tensile Strength	1.0	ASTM D412	Kgf/cm ²
Application temperature	-60~125	-	°C
Low molecular Siloxane (D3 to D20 total)	N.D	Gas Chromatography	%
Outgassing CVCM (wt%)	0.0072	By LiPOLY	-
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	27	ASTM D5470 modify	%
Deflection @20 psi	42	ASTM D5470 modify	%
Deflection @30 psi	51	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	16	ASTM D149	KV/mm
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	3.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.671	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.543	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.392	ASTM D5470	°C-in²/ W
Thermal impedance@40 psi	0.236	ASTM D5470	°C-in²/ W
Thermal impedance@50 psi	0.169	ASTM D5470	°C-in²/ W
	1	1	1

The chemical formula indicates that if Cyclic polydimethylsilox-ane (HO-[Si(CH3)2O]n-H) is non-reaction, it's volatile anytime and everywhere. For example, when the electric products which has been put in a confined space, the volatile of low-molecular-weight silox-anes will makes the elecetic products uncontacted.

Thermal Resistance vs. Pressure vs. Deflection

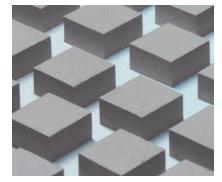
Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific ourpose. The purchaser needs to evaluate and verify the performance of the product tare the product and verify the performance of the product near the product and verify the performance of the product near the product and verify the performance of the product near the product and verify the performance of the product tare the product and verify the performance of the product request specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All ripots reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

N700C

Non-Silicone Thermal Conductive Pad

Non-Silicone Thermal Compound N700C is made of non-silicon resin material. No low molecular siloxane volatilization and low total volatile gas, no electrical contact & pollution problems. N700C is flexible and has great thermal conduction, Low compressive stress and high compressive characteristics can effectively reduce the stress load of components, so that the equipment only needs to bear less mechanical stress, and at the same time, it can have low thermal resistance and high thermal conductivity.

FEATURES

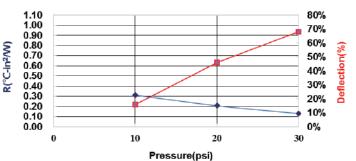

- / Thermal conductivity:5.0 W/m*K
- / It's made by non-silicone resin materials
- / Low contact thermal resistance
- / With electrical insulation
- / Outstanding thermal conductivity
- / Applicable to optical and sensitive electric components

TYPICAL APPLICATION

- / HDDS
- / Optical appliance
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS

- / Sheet form
- / Die-cut parts



TYPICAL PROPERTIES

PROPERTY	N700C	TEST METHOD	UNIT	
Color	Gray	Visual	-	
Surface tack 2-side/1-side	2	-	-	
Thickness	Customized	ASTM D374	mm	
Density	3.2	ASTM D792	g/cm³	
Hardness	55	ASTM D2240	Shore OO	
Tensile Strength	0.15	ASTM D412	Kgf/cm ²	
Application temperature	-60~125	-	°C	
Low molecular Siloxane (D3 to D20 total)	N.D	Gas Chromatography	%	
Outgassing CVCM (wt%)	0.0061	By LiPOLY	-	
ROHS & REACH	Compliant	-	-	
COMPRESSION@1.0mm				
Deflection @10 psi	16	ASTM D5470 modify	%	
Deflection @20 psi	46	ASTM D5470 modify	%	
Deflection @30 psi	68	ASTM D5470 modify	%	
ELECTRICAL				
Dielectric breakdown	8	ASTM D149	KV/mm	
Surface resistivity	>1011	ASTM D257	Ohm	
Volume resistivity	>1010	ASTM D257	Ohm-m	
THERMAL				
Thermal conductivity	5.0	ASTM D5470	W/m*K	
Thermal impedance@10 psi	0.312	ASTM D5470	°C-in²/ W	
Thermal impedance@20 psi	0.208	ASTM D5470	°C-in²/ W	
Thermal impedance@30 psi	0.132	ASTM D5470	°C-in²/ W	

The chemical formula indicates that if Cyclic polydimethylsilox-ane (HO-[Si(CH3)20]n-H) is non-reaction, it's volatile anytime and everywhere. For example, when the electric products which has been put in a confined space, the volatile of low-molecular-weight silox-anes will makes the elecetic products uncontacted.

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The protest methods are used as the definition standards for LiPOLY. Safety before using the material. We strongly recommend the purchaser pretest the product and verify the performance of the product therefore the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LIPOLY products are sold in accordance with the LIPOLY Terms and Conditions in effect at the time of purchases and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LIPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LIPOLY.

N800AH-s

Non-Silicone Thermal Conductive Pad

Non-Silicone Thermal Compound N800AH-s is made of non-silicon resin material. No low molecular siloxane volatilization and low total volatile gas, no electrical contact & pollution problems. N800AH-s is flexible and has great thermal conduction, Low compressive stress and high compressive characteristics can effectively reduce the stress load of components, so that the equipment only needs to bear less mechanical stress, and at the same time, it can have low thermal resistance and high thermal conductivity.

FEATURES

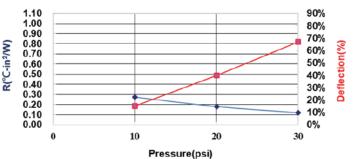
- / Thermal conductivity:7.0 W/m*K
- / It's made by non-silicone resin materials
- / Low contact thermal resistance
- / With electrical insulation
- / Outstanding thermal conductivity
- / Applicable to optical and sensitive electric components

TYPICAL APPLICATION

- / HDDS
- / Optical appliance
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS

- / Sheet form
- / Die-cut parts



TYPICAL PROPERTIES

PROPERTY	N800AH-s	TEST METHOD	UNIT
Color	Pink	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	3.3	ASTM D792	g/cm³
Hardness	60	ASTM D2240	Shore OO
Tensile Strength	0.15	ASTM D412	Kgf/cm ²
Application temperature	-60~125	-	°C
Low molecular Siloxane (D3 to D20 total)	N.D	Gas Chromatography	%
Outgassing CVCM (wt%)	0.0057	By LiPOLY	-
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	15	ASTM D5470 modify	%
Deflection @20 psi	40	ASTM D5470 modify	%
Deflection @30 psi	67	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	8	ASTM D149	KV/mm
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	7.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.274	ASTM D5470	°C-in²/W
Thermal impedance@20 psi	0.182	ASTM D5470	°C-in²/W
Thermal impedance@30 psi	0.121	ASTM D5470	°C-in²/W

The chemical formula indicates that if Cyclic polydimethylsilox-ane (HO-[Si(CH3)2O]n-H) is non-reaction, it's volatile anytime and everywhere. For example, when the electric products which has been put in a confined space, the volatile of low-molecular-weight silox-anes will makes the elecetic products uncontacted.

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the performance of the product transer's specific orditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPDIY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All ripOts reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

N800A-s

Non-Silicone Thermal Conductive Pad

Non-Silicone Thermal Compound N800A-s is made of non-silicon resin material. No low molecular siloxane volatilization and low total volatile gas, no electrical contact & pollution problems. N800A-s is flexible and has great thermal conduction, Low compressive stress and high compressive characteristics can effectively reduce the stress load of components, so that the equipment only needs to bear less mechanical stress, and at the same time, it can have low thermal resistance and high thermal conductivity.

FEATURES

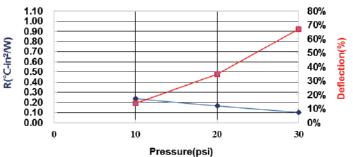
- / Thermal conductivity:9.0 W/m*K
- / It's made by non-silicone resin materials
- / Low contact thermal resistance
- / With electrical insulation
- / Outstanding thermal conductivity
- / Applicable to optical and sensitive electric components

TYPICAL APPLICATION

- / HDDS
- / Optical appliance
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS

- / Sheet form
- / Die-cut parts



TYPICAL PROPERTIES

N800A-s Pink	TEST METHOD	UNIT
Pink		
	Visual	-
2	-	-
Customized	ASTM D374	mm
3.4	ASTM D792	g/cm³
50	ASTM D2240	Shore OO
0.15	ASTM D412	Kgf/cm ²
-60~125	-	°C
N.D	Gas Chromatography	%
0.0049	By LiPOLY	-
Compliant	-	-
14	ASTM D5470 modify	%
35	ASTM D5470 modify	%
67	ASTM D5470 modify	%
8	ASTM D149	KV/mm
>1011	ASTM D257	Ohm
>1010	ASTM D257	Ohm-m
9.0	ASTM D5470	W/m*K
0.238	ASTM D5470	°C-in²/ W
0.166	ASTM D5470	°C-in²/ W
0.102	ASTM D5470	°C-in²/ W
	2 Customized 3.4 50 0.15 -60~125 N.D 0.0049 Compliant 2 14 35 67 8 8 510 ¹¹ >10 ¹⁰ 9.0 0.238 0.166	2 - Customized ASTM D374 3.4 ASTM D792 50 ASTM D2240 0.15 ASTM D2240 0.15 ASTM D412 -60~125 - N.D Chromatography 0.0049 By LiPOLY Compliant - 14 ASTM D5470 modify 35 ASTM D5470 modify 67 ASTM D5470 modify 67 ASTM D5470 modify 8 ASTM D5470 modify 8 ASTM D5470 modify 9.0 ASTM D5470 9.0 ASTM D257 9.0 ASTM D5470 0.238 ASTM D5470 0.166 ASTM D5470

The chemical formula indicates that if Cyclic polydimethylsilox-ane (HO-[Si(CH3)2O]n-H) is non-reaction, it's volatile anytime and everywhere. For example, when the electric products which has been put in a confined space, the volatile of low-molecular-weight silox-anes will makes the elecetic products uncontacted.

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The protest methods are used as the definition standards for LiPOLY. Safety before using the material. We strongly recommend the purchaser pretest the product and verify the performance of the product therefore the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LIPOLY products are sold in accordance with the LIPOLY Terms and Conditions in effect at the time of purchases and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LIPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LIPOLY.

N800BH

Non-Silicone Thermal Conductive Pad

Non-Silicone Thermal Compound N800BH is made of non-silicon resin material. No low molecular siloxane volatilization and low total volatile gas, no electrical contact & pollution problems. N800BH is flexible and has great thermal conduction, Low compressive stress and high compressive characteristics can effectively reduce the stress load of components, so that the equipment only needs to bear less mechanical stress, and at the same time, it can have low thermal resistance and high thermal conductivity.

FEATURES

- / Thermal conductivity:11.0 W/m*K
- / It's made by non-silicone resin materials
- / Low contact thermal resistance
- / With electrical insulation
- / Outstanding thermal conductivity
- / Applicable to optical and sensitive electric components

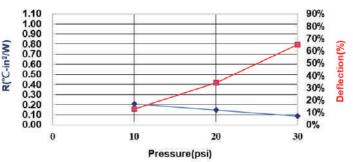
TYPICAL APPLICATION

- / HDDS
- / Optical appliance
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS

- / Sheet form
- / Die-cut parts

35



TYPICAL PROPERTIES

PROPERTY	N800BH	TEST METHOD	UNIT
Color	Pink	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	3.3	ASTM D792	g/cm³
Hardness	50	ASTM D2240	Shore OO
Tensile Strength	0.15	ASTM D412	Kgf/cm ²
Application temperature	-60~125	-	°C
Low molecular Siloxane (D3 to D20 total)	N.D	Gas Chromatography	%
Outgassing CVCM (wt%)	0.0047	By LiPOLY	-
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	13	ASTM D5470 modify	%
Deflection @20 psi	34	ASTM D5470 modify	%
Deflection @30 psi	65	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	8	ASTM D149	KV/mm
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	11.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.210	ASTM D5470	°C-in²/W
Thermal impedance@20 psi	0.148	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.088	ASTM D5470	°C-in²/W

The chemical formula indicates that if Cyclic polydimethylsilox-ane (HO-[Si(CH3)2O]n-H) is non-reaction, it's volatile anytime and everywhere. For example, when the electric products which has been put in a confined space, the volatile of low-molecular-weight silox-anes will makes the elecetic products uncontacted.

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific ourpose. The purchaser needs to evaluate and verify the performance of the product tare the product and verify the performance of the product near the product and verify the performance of the product near the specification or guaranteed. This document does not guarantee the performance of the product near the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terma and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All ripHts reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

N800B

Non-Silicone Thermal Conductive Pad

Non-Silicone Thermal Compound N800B is made of non-silicon resin material. No low molecular siloxane volatilization and low total volatile gas, no electrical contact & pollution problems. N800B is flexible and has great thermal conduction, Low compressive stress and high compressive characteristics can effectively reduce the stress load of components, so that the equipment only needs to bear less mechanical stress, and at the same time, it can have low thermal resistance and high thermal conductivity.

FEATURES

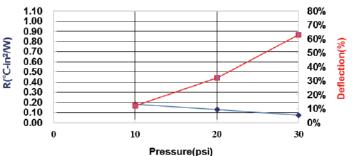
- / Thermal conductivity:13.0 W/m*K
- / It's made by non-silicone resin materials
- / Low contact thermal resistance
- / With electrical insulation
- / Outstanding thermal conductivity
- / Applicable to optical and sensitive electric components

TYPICAL APPLICATION

- / HDDS
- / Optical appliance
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS

- / Sheet form
- / Die-cut parts



TYPICAL PROPERTIES

PROPERTY	N800B	TEST METHOD	UNIT
Color	Gray	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	3.3	ASTM D792	g/cm³
Hardness	50	ASTM D2240	Shore OO
Tensile Strength	0.15	ASTM D412	Kgf/cm ²
Application temperature	-60~125	-	°C
Low molecular Siloxane (D3 to D20 total)	N.D	Gas Chromatography	%
Outgassing CVCM (wt%)	0.0045	By LiPOLY	-
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	12	ASTM D5470 modify	%
Deflection @20 psi	32	ASTM D5470 modify	%
Deflection @30 psi	63	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	8	ASTM D149	KV/mm
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	13.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.183	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.131	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.074	ASTM D5470	°C-in²/ W

The chemical formula indicates that if Cyclic polydimethylsilox-ane (HO-[Si(CH3)2O]n-H) is non-reaction, it's volatile anytime and everywhere. For example, when the electric products which has been put in a confined space, the volatile of low-molecular-weight silox-anes will makes the elecetic products uncontacted.

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the safety before using the material. We strongly recommend the purchaser pretest the product and verify the performance of the product targets' specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be (minished upon request. All inplot reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

N800CH

Non-Silicone Thermal Conductive Pad

Non-Silicone Thermal Compound N800CH is made of non-silicon resin material. No low molecular siloxane volatilization and low total volatile gas, no electrical contact & pollution problems. N800CH is flexible and has great thermal conduction, Low compressive stress and high compressive characteristics can effectively reduce the stress load of components, so that the equipment only needs to bear less mechanical stress, and at the same time, it can have low thermal resistance and high thermal conductivity.

FEATURES

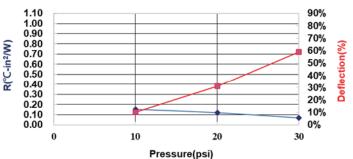
- / Thermal conductivity:15.0 W/m*K
- / It's made by non-silicone resin materials
- / Low contact thermal resistance
- / With electrical insulation
- / Outstanding thermal conductivity
- / Applicable to optical and sensitive electric components

TYPICAL APPLICATION

- / HDDS
- / Optical appliance
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS

- / Sheet form
- / Die-cut parts



TYPICAL PROPERTIES

PROPERTY	N800CH	TEST METHOD	UNIT
Color	Gray	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	3.3	ASTM D792	g/cm³
Hardness	50	ASTM D2240	Shore OO
Tensile Strength	0.15	ASTM D412	Kgf/cm ²
Application temperature	-60~125	-	°C
Low molecular Siloxane (D3 to D20 total)	N.D	Gas Chromatography	%
Outgassing CVCM (wt%)	0.0040	By LiPOLY	-
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	10	ASTM D5470 modify	%
Deflection @20 psi	31	ASTM D5470 modify	%
Deflection @30 psi	59	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	8	ASTM D149	KV/mm
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	15.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.153	ASTM D5470	°C-in²/W
Thermal impedance@20 psi	0.119	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.067	ASTM D5470	°C-in²/ W

The chemical formula indicates that if Cyclic polydimethylsilox-ane (HO-[Si(CH3)2O]n-H) is non-reaction, it's volatile anytime and everywhere. For example, when the electric products which has been put in a confined space, the volatile of low-molecular-weight silox-anes will makes the elecetic products uncontacted.

Thermal Resistance vs. Pressure vs. Deflection

N800C

Non-Silicone Thermal Conductive Pad

Non-Silicone Thermal Compound N800C is made of non-silicon resin material. No low molecular siloxane volatilization and low total volatile gas, no electrical contact & pollution problems. N800C is flexible and has great thermal conduction, Low compressive stress and high compressive characteristics can effectively reduce the stress load of components, so that the equipment only needs to bear less mechanical stress, and at the same time, it can have low thermal resistance and high thermal conductivity.

FEATURES

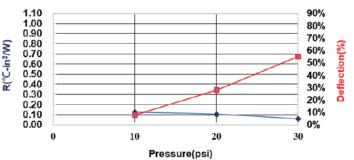
- / Thermal conductivity:17.0 W/m*K
- / It's made by non-silicone resin materials
- / Low contact thermal resistance
- / With electrical insulation
- / Outstanding thermal conductivity
- / Applicable to optical and sensitive electric components

TYPICAL APPLICATION

- / HDDS
- / Optical appliance
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS

- / Sheet form
- / Die-cut parts



TYPICAL PROPERTIES

PROPERTY	N800C	TEST METHOD	UNIT
Color	Gray	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	3.3	ASTM D792	g/cm³
Hardness	50	ASTM D2240	Shore OO
Tensile Strength	0.15	ASTM D412	Kgf/cm ²
Application temperature	-60~125	-	°C
Low molecular Siloxane (D3 to D20 total)	N.D	Gas Chromatography	%
Outgassing CVCM (wt%)	0.0043	By LiPOLY	-
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	8	ASTM D5470 modify	%
Deflection @20 psi	28	ASTM D5470 modify	%
Deflection @30 psi	55	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	8	ASTM D149	KV/mm
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	17.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.122	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.103	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.058	ASTM D5470	°C-in²/ W

The chemical formula indicates that if Cyclic polydimethylsilox-ane (HO-[Si(CH3)2O]n-H) is non-reaction, it's volatile anytime and everywhere. For example, when the electric products which has been put in a confined space, the volatile of low-molecular-weight silox-anes will makes the elecetic products uncontacted.

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The protest methods are used as the definition standards for LiPOLY. Safety before using the material. We strongly recommend the purchaser pretest the product and verify the performance of the product therefore the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LIPOLY products are sold in accordance with the LIPOLY Terms and Conditions in effect at the time of purchases and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LIPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LIPOLY.

S-putty

Thermal Conductive Putty

SHIU LI TECHNOLOGY CO., LTD

LiPOLY S-putty is a one-part dispensable material with thermal conductivity 3.5 W/m*K. High deformation can fill small air gaps perfectly to remove tolerance. It also can overcome overflow and drying problems to increase the thermal conductivity. S-putty is a great alternative to thermal grease and ideally suited for dispensing using the dispensing robot.

FEATURES

- / Thermal conductivity:3.5 W/m*K
- / Bond line thickness:100-1500µm
- / Designed to remove manufacturing tolerances
- / Does not produce stress on delicate components
- / No vertical flow
- / Dispensable for serial manufacture
- / For any high compression and low stress application

TYPICAL APPLICATION

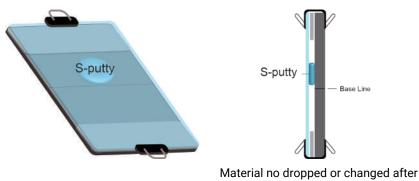
- / Between CPU and heat sink
- / Between a component and heat sink
- / High speed mass storage drives
- / Telecommunication hardware
- / Flat-panel displays
- / Set-top box
- / IP CAM
- / 5G base station & infrastructure
- / EV electric vehicle

CONFIGURATIONS

/ Cartridges: 30ml, 55ml, 330ml / Bucket: 1kg, 25kg

PRESERVATION

It can be preserved for 60 months under the condition of unopened and under room temperature 25°C.



TYPICAL PROPERTIES

PROPERTY	S-putty	TEST METHOD	UNIT
Color	Blue	Visual	-
Resin base	Silicone	-	-
Viscosity	2000	DIN 53018	Pa.s
Density	3.0	ASTM D792	g/cm³
Application temperature	-60~180	-	°C
Bond line thickness	100~1500	-	μm
Shelf life	60 months	-	-
ROHS & REACH	Compliant	-	-
ELECTRICAL			
Dielectric breakdown	12	ASTM D149	KV/mm
Volume resistivity	>1013	ASTM D257	Ohm-m
THERMAL	'		
Thermal conductivity	3.5	ASTM D5470	W/m*K
Thermal impedance@10psi	0.079	ASTM D5470	°C-in²/ W
Thermal impedance@30psi	0.071	ASTM D5470	°C-in²/ W
Thermal impedance@50psi	0.061	ASTM D5470	°C-in²/ W

VERTICAL RELIABILITY

Using 1.5mm pad as a gap control, put the putty between the aluminum and the glass panel mark the initial position. Then, place it in the oven with 125°C for 1,000 hours and observe its displacement after reliability test

Material no dropped or changed after high temperature aging testing

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranted. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser meeds to evaluate and verify the safety before using the material. We strongly recommend the purchaser pre-test the product and verify the performance of the product under the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are solved within the LiPOLY meres and Conditions in effect at the time of purchaser as guaranty of patent infringement. Copyright 2023 LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates.

S-putty2-s

Thermal Conductive Putty

LiPOLY S-putty2-s is a one-part dispensable material with thermal conductivity 6.0 W/m*K. High deformation can fill small air gaps perfectly to remove tolerance. It also can overcome overflow and drying problems to increase the thermal conductivity. S-putty2-s is a great alternative to thermal grease and ideally suited for dispensing using the dispensing robot.

FEATURES

- / Thermal conductivity:6.0 W/m*K
- / Bond line thickness:100-1500µm
- / Designed to remove manufacturing tolerances
- / Does not produce stress on delicate components
- / No vertical flow
- / Dispensable for serial manufacture
- / For any high compression and low stress application

TYPICAL APPLICATION

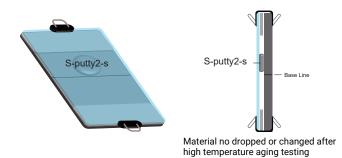
- / Between CPU and heat sink
- / Between a component and heat sink
- / High speed mass storage drives
- / Telecommunication hardware
- / Flat-panel displays
- / Set-top box
- / IP CAM
- / 5G base station & infrastructure
- / EV electric vehicle

CONFIGURATIONS

/ Cartridges: 30ml, 55ml, 330ml / Bucket: 1kg, 25kg

PRESERVATION

It can be preserved for 60 months under the condition of unopened and under room temperature 25°C.



TYPICAL PROPERTIES

PROPERTY	S-putty2-s	TEST METHOD	UNIT
Color	Blue	Visual	-
Resin base	Silicone	-	-
Viscosity	3500	DIN 53018	Pa.s
Density	3.3	ASTM D792	g/cm³
Application temperature	-60~180	-	°C
Bond line thickness	100~1500	-	μm
Shelf life	60 months	-	-
ROHS & REACH	Compliant	-	-
ELECTRICAL			
Dielectric breakdown	12	ASTM D149	KV/mm
Volume resistivity	>1013	ASTM D257	Ohm-m
THERMAL	'		
Thermal conductivity	6.0	ASTM D5470	W/m*K
Thermal impedance@10psi	0.062	ASTM D5470	°C-in²/ W
Thermal impedance@30psi	0.059	ASTM D5470	°C-in²/ W
Thermal impedance@50psi	0.053	ASTM D5470	°C-in²/ W

VERTICAL RELIABILITY

Using 1.5mm pad as a gap control, put the putty between the aluminum and the glass panel mark the initial position. Then, place it in the oven with 125°C for 1,000 hours and observe its displacement after reliability test

H-putty

LiPOLY H-putty is a one-part dispensable material with thermal conductivity 3.5 W/m*K. High deformation can fill small air gaps perfectly to remove tolerance. It also can overcome overflow and drying problems to increase the thermal conductivity. H -putty is a great alternative to thermal grease and ideally suited for dispensing using the dispensing robot.

FEATURES

- / Thermal conductivity:3.5 W/m*K
- / Bond line thickness:100-3000µm
- / Designed to remove manufacturing tolerances
- / Does not produce stress on delicate components
- / No vertical flow
- / Dispensable for serial manufacture
- / For any high compression and low stress application

TYPICAL APPLICATION

- / Between CPU and heat sink
- / Between a component and heat sink
- / High speed mass storage drives
- / Telecommunication hardware
- / Flat-panel displays
- / Set-top box
- / IP CAM

41

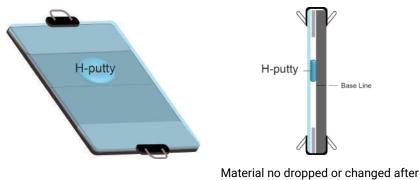
- / 5G base station & infrastructure
- / EV electric vehicle

CONFIGURATIONS

/ Cartridges: 30ml, 55ml, 330ml / Bucket: 1kg, 25kg

PRESERVATION

It can be preserved for 60 months under the condition of unopened and under room temperature 25°C.



TYPICAL PROPERTIES

PROPERTY	H-putty	TEST METHOD	UNIT
Color	Blue	Visual	-
Resin base	Silicone	-	-
Viscosity	15000	DIN 53018	Pa.s
Density	3.0	ASTM D792	g/cm³
Application temperature	-60~180	-	°C
Bond line thickness	100~3000	-	μm
Shelf life	60 months	-	-
ROHS & REACH	Compliant	-	-
ELECTRICAL			
Dielectric breakdown	12	ASTM D149	KV/mm
Volume resistivity	>1013	ASTM D257	Ohm-m
THERMAL	'	'	
Thermal conductivity	3.5	ASTM D5470	W/m*K
Thermal impedance@10psi	0.076	ASTM D5470	°C-in²/ W
Thermal impedance@30psi	0.072	ASTM D5470	°C-in²/ W
Thermal impedance@50psi	0.069	ASTM D5470	°C-in²/ W

VERTICAL RELIABILITY

Using 3.0mm pad as a gap control, put the putty between the aluminum and the glass panel mark the initial position. Then, place it in the oven with 125°C for 1,000 hours and observe its displacement after reliability test

Material no dropped or changed after high temperature aging testing

H-putty2

Thermal Conductive Putty

LiPOLY H-putty2 is a one-part dispensable material with thermal conductivity 6.0 W/m*K. High deformation can fill small air gaps perfectly to remove tolerance. It also can overcome overflow and drying problems to increase the thermal conductivity. H -putty2 is a great alternative to thermal grease and ideally suited for dispensing using the dispensing robot.

FEATURES

- / Thermal conductivity:6.0 W/m*K
- / Bond line thickness:100-3000µm
- / Designed to remove manufacturing tolerances
- / Does not produce stress on delicate components
- / No vertical flow
- / Dispensable for serial manufacture
- / For any high compression and low stress application

TYPICAL APPLICATION

- / Between CPU and heat sink
- / Between a component and heat sink
- / High speed mass storage drives
- / Telecommunication hardware
- / Flat-panel displays
- / Set-top box
- / IP CAM
- / 5G base station & infrastructure
- / EV electric vehicle

CONFIGURATIONS

/ Cartridges: 30ml, 55ml, 330ml / Bucket: 1kg, 25kg

PRESERVATION

It can be preserved for 60 months under the condition of unopened and under room temperature 25°C.



TYPICAL PROPERTIES

PROPERTY	H-putty2	TEST METHOD	UNIT
Color	Blue	Visual	-
Resin base	Silicone	-	-
Viscosity	15000	DIN 53018	Pa.s
Density	3.3	ASTM D792	g/cm³
Application temperature	-60~180	-	°C
Bond line thickness	100~3000	-	μm
Shelf life	60 months	-	-
ROHS & REACH	Compliant	-	-
ELECTRICAL			
Dielectric breakdown	12	ASTM D149	KV/mm
Volume resistivity	>1013	ASTM D257	Ohm-m
THERMAL	1	'	
Thermal conductivity	6.0	ASTM D5470	W/m*K
Thermal impedance@10psi	0.061	ASTM D5470	°C-in²/ W
Thermal impedance@30psi	0.054	ASTM D5470	°C-in²/ W
Thermal impedance@50psi	0.050	ASTM D5470	°C-in²/ W

VERTICAL RELIABILITY

Using 3.0mm pad as a gap control, put the putty between the aluminum and the glass panel mark the initial position. Then, place it in the oven with 125°C for 1,000 hours and observe its displacement after reliability test

Material no dropped or changed after high temperature aging testing

SH-putty3

LiPOLY SH-putty3 is a one-part dispensable material with thermal conductivity 8.0 W/m*K. High deformation can fill small air gaps perfectly to remove tolerance. It also can overcome overflow and drying problems to increase the thermal conductivity. SH-putty3 is a great alternative to thermal grease and ideally suited for dispensing using the dispensing robot.

FEATURES

- / Thermal conductivity:8.0 W/m*K
- / Bond line thickness:100-3000µm
- / Designed to remove manufacturing tolerances
- / Does not produce stress on delicate components
- / No vertical flow
- / Dispensable for serial manufacture
- / For any high compression and low stress application

TYPICAL APPLICATION

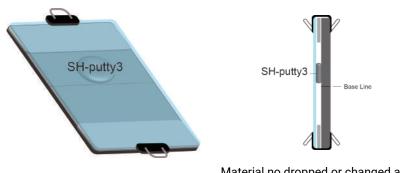
- / Between CPU and heat sink
- / Between a component and heat sink
- / High speed mass storage drives
- / Telecommunication hardware
- / Flat-panel displays
- / Set-top box
- / IP CAM
- / 5G base station & infrastructure
- / EV electric vehicle

CONFIGURATIONS

/ Cartridges: 30ml, 55ml, 330ml / Bucket: 1kg, 25kg

PRESERVATION

It can be preserved for 60 months under the condition of unopened and under room temperature 25°C.



TYPICAL PROPERTIES

PROPERTY	SH-putty3	TEST METHOD	UNIT
Color	Gray	Visual	-
Resin base	Silicone	-	-
Viscosity	17000	DIN 53018	Pa.s
Density	3.4	ASTM D792	g/cm³
Application temperature	-60~180	-	°C
Bond line thickness	100~3000	-	μm
Shelf life	60 months	-	-
ROHS & REACH	Compliant	-	-
ELECTRICAL			
Dielectric breakdown	12	ASTM D149	KV/mm
Volume resistivity	>1013	ASTM D257	Ohm-m
THERMAL	'		
Thermal conductivity	8.0	ASTM D5470	W/m*K
Thermal impedance@10psi	0.039	ASTM D5470	°C-in²/ W
Thermal impedance@30psi	0.035	ASTM D5470	°C-in²/ W
Thermal impedance@50psi	0.031	ASTM D5470	°C-in²/ W

VERTICAL RELIABILITY

Using 3.0mm pad as a gap control, put the putty between the aluminum and the glass panel mark the initial position. Then, place it in the oven with 125°C for 1,000 hours and observe its displacement after reliability test

Material no dropped or changed after high temperature aging testing

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser meets the product and verify the performance of the product under the purchaser's does not guaranteed. This document are not for product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchandarily or the product and verify the performance of the product to meet and verify the performance of the product inder the purchaser's specific conditions. Libbility and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchandarily or products are and a constructed to a subscription of the purchaser and a constructed to a performance and quality required for the purchaser pre-test the product and verify the performance of the product inder the purchaser's specific conditions. Libbility and user. LiPOLY makes no warranty as to the suitability, merchandarily or products are and a constructed to a subscription or teguest. All (Fights reserved, including LiPOLY before using the performance and quality or products are subscription or the product and verify the performance and quality including LiPOLY shall not be relied. LiPOLY and the teleport terms and constructed at the time of purchases are and a corry of which will be for including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

S-putty5-s

LiPOLY S-putty5-s is a one-part dispensable material with thermal conductivity 10.0 W/m*K. High deformation can fill small air gaps perfectly to remove tolerance. It also can overcome overflow and drying problems to increase the thermal conductivity. S-putty5-s is a great alternative to thermal grease and ideally suited for dispensing using the dispensing robot.

FEATURES

- / Thermal conductivity:10.0 W/m*K
- / Bond line thickness:200-3000µm
- / Designed to remove manufacturing tolerances
- / Does not produce stress on delicate components
- / No vertical flow
- / Dispensable for serial manufacture
- / For any high compression and low stress application

TYPICAL APPLICATION

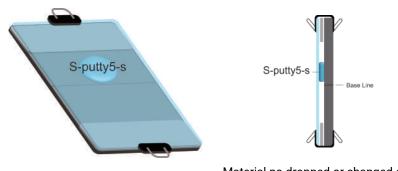
- / Between CPU and heat sink
- / Between a component and heat sink
- / High speed mass storage drives
- / Telecommunication hardware
- / Flat-panel displays
- / Set-top box
- / IP CAM

CONFIGURATIONS

/ Cartridges: 30ml, 55ml, 330ml / Bucket: 1kg, 25kg

PRESERVATION

It can be preserved for 60 months under the condition of unopened and under room temperature 25°C.



TYPICAL PROPERTIES

PROPERTY	S-putty5-s	TEST METHOD	UNIT
Color	Blue	Visual	-
Resin base	Silicone	-	-
Viscosity	20000	DIN 53018	Pa.s
Density	3.3	ASTM D792	g/cm³
Application temperature	-60~180	-	°C
Bond line thickness	200~3000	-	μm
Shelf life	60 months	-	-
ROHS & REACH	Compliant	-	-
ELECTRICAL			
Dielectric breakdown	12	ASTM D149	KV/mm
Volume resistivity	>1013	ASTM D257	Ohm-m
THERMAL	'		
Thermal conductivity	10.0	ASTM D5470	W/m*K
Thermal impedance@10psi	0.035	ASTM D5470	°C-in²/ W
Thermal impedance@30psi	0.031	ASTM D5470	°C-in²/ W
Thermal impedance@50psi	0.027	ASTM D5470	°C-in²/ W

VERTICAL RELIABILITY

Using 3.0mm pad as a gap control, put the putty between the aluminum and the glass panel mark the initial position. Then, p lace it in the oven with 125°C for 1,000 hours and observe its displacement after reliability test

Material no dropped or changed after high temperature aging testing

PK223DM

Two-Part Thermal Conductive Gap Filler

LiPOLY PK223DM is a two-part liquid gap filler, fast cured at room temperature or elevated temperature. With a thermal conductivity of 2.2 W/m*K, PK223DM provides high thermal conductivity and low thermal impedance. It is ideally suited for dispensing using the dispensing robot or by syringe.

FEATURES

- / Thermal conductivity: 2.2 W/m*K
- / Fast curing in normal atmospheric temperature
- / Great reliability
- / Great sealing in low pressure

TYPICAL APPLICATION

- / Between CPU and heat sink
- / Between a component and heat sink
- / Power supplies
- / High speed mass storage drives
- / Telecommunication hardware
- / Electric vehicle& Automotive battery
- / 5G base station & infrastructure
- / EV electric vehicle

CONFIGURATIONS

/ Cartridges: 50ml, 400ml

/ Other special and custom sizes are available upon request

DISPENSING INSTRUCTIONS

Use the disposable plastic static mixing nozzles to mix parts A and B together to the desired ratio. Liquid gap fillers can be dispensed using an automatic dispensing machine or a manual dispensing tool that can be provided by LiPOLY upon request/purchase. The disposable plastic static mixing nozzles cannot be re-used.

STORAGE

Two-part liquid gap fillers should be stored in climate-controlled environments at or below 25°C. Keep liquid gap fillers away from direct sunlight and away from high-temperature environments.

PRESERVATION

It can be preserved for 24 months under the condition of unopened and under room temperature 25°C.

PRECAUTIONS

The two-part liquid gap filler may not cure properly if it comes into contact with certain substances, including amine, sulfur, organophosphorus compounds, and organotin compounds. Please avoid the following substances when handling: (N, P, S, Sn, Pb, Hg, Sb, Bi, As) Ensure a clean mixing container is used (e.g.: paper cup or plastic cup) before injecting the A and B parts into the mixing container. The plasticizer, wax from the cups, varnish or the epoxy from the oven may contaminate the A and B parts. You are reminded to pre-test the gap filler before using it.

PLEASE NOTE

It's recommended that the diameter of mixing tube outlet should be 3mm at least, which can solve the possible problem of poor fluidity caused by ambient temperature.

TYPICAL PROPERTIES

PROPERTY	PK223DM	TEST METHOD	UNIT
Color	White (A part) Gray (B part)	Visual	-
Solid content	100% (Two-part : 100:100)	-	-
Viscosity A	120	ISO 3219	Pa.s
Viscosity B	110	ISO 3219	Pa.s
Density	2.2	ASTM D792	g/cm³
Shelf life	24 months	-	-
ROHS & REACH	Compliant	-	-
SOLID(AFTER CURE)			
Thermal conductivity	2.2	ASTM D5470	W/m*K
Thermal impedance@10mils BLT	0.294	ASTM D5470	°C-in²/ W
Thermal impedance@20mils BLT	0.571	ASTM D5470	°C-in²/ W
Thermal impedance@30mils BLT	0.710	ASTM D5470	°C-in²/ W
Hardness	50	ASTM D2240	Shore OC
Working temp (long term)	-60 ~ 200	-	°C
Operating ambient temp	20 ~ 30	-	°C
ELECTRICAL			
Dielectric breakdown	8	ASTM D149	KV/mm
Surface resistivity	>1010	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
CURE SCHEDULE			
Pot life @ 25°C	10~15	By LiPOLY	min
Surface dry @ 25°C	20~25	By LiPOLY	min
Cure @ 25°C	30~35	By LiPOLY	min
Cure @ 100°C	72	By LiPOLY	sec
Cure @ 120°C	20	By LiPOLY	sec

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the safety before using the material. We strongly recommend the purchaser pre-test the product and verify the performance of the product under the purchaser's specific or general uses. LiPOLY shall not be liable for incidental or consequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be lied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

PK404DM

Two-Part Thermal Conductive Gap Filler

LiPOLY PK404DM is a two-part liquid gap filler, fast cured at room temperature or elevated temperature. With a thermal conductivity of 3.6 W/m*K, PK404DM provides high thermal conductivity and low thermal impedance. It is ideally suited for dispensing using the dispensing robot or by syringe.

FEATURES

- / Thermal conductivity: 3.6 W/m*K
- / Fast curing in normal atmospheric temperature
- / Great reliability
- / Great sealing in low pressure

TYPICAL APPLICATION

- / Between CPU and heat sink
- / Between a component and heat sink
- / Power supplies
- / High speed mass storage drives
- / Telecommunication hardware
- / Electric vehicle& Automotive battery
- / 5G base station & infrastructure
- / EV electric vehicle

CONFIGURATIONS

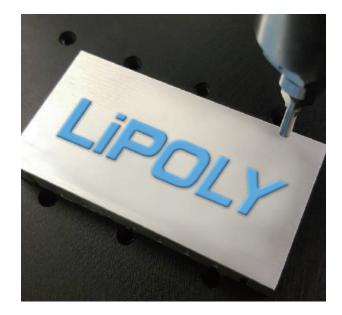
/ Cartridges: 50ml, 400ml

/ Other special and custom sizes are available upon request

DISPENSING INSTRUCTIONS

Use the disposable plastic static mixing nozzles to mix parts A and B together to the desired ratio. Liquid gap fillers can be dispensed using an automatic dispensing machine or a manual dispensing tool that can be provided by LiPOLY upon request/purchase. The disposable plastic static mixing nozzles cannot be re-used.

STORAGE


Two-part liquid gap fillers should be stored in climate-controlled environments at or below 25°C. Keep liquid gap fillers away from direct sunlight and away from high-temperature environments.

PRESERVATION

It can be preserved for 24 months under the condition of unopened and under room temperature 25°C.

PRECAUTIONS

The two-part liquid gap filler may not cure properly if it comes into contact with certain substances, including amine, sulfur, organophosphorus compounds, and organotin compounds. Please avoid the following substances when handling: (N, P, S, Sn, Pb, Hg, Sb, Bi, As) Ensure a clean mixing container is used (e.g.: paper cup or plastic cup) before injecting the A and B parts into the mixing container. The plasticizer, wax from the cups, varnish or the epoxy from the oven may contaminate the A and B parts. You are reminded to pre-test the gap filler before using it.

PLEASE NOTE

It's recommended that the diameter of mixing tube outlet should be 3mm at least, which can solve the possible problem of poor fluidity caused by ambient temperature.

TYPICAL PROPERTIES

PROPERTY	PK404DM	TEST METHOD	UNIT
Color	Blue (A part) White (B part)	Visual	-
Solid content	100% (Two-part : 100:100)	-	-
Viscosity A	47	ISO 3219	Pa.s
Viscosity B	48	ISO 3219	Pa.s
Density	3.0	ASTM D792	g/cm³
Shelf life	24 months	-	-
ROHS & REACH	Compliant	-	-
SOLID(AFTER CURE)			
Thermal conductivity	3.6	ASTM D5470	W/m*K
Thermal impedance@10mils BLT	0.252	ASTM D5470	°C-in²/ W
Thermal impedance@20mils BLT	0.471	ASTM D5470	°C-in²/ W
Thermal impedance@30mils BLT	0.730	ASTM D5470	°C-in²/ W
Hardness	80	ASTM D2240	Shore OO
Working temp (long term)	-60 ~ 200	-	°C
Operating ambient temp	20 ~ 30	-	°C
ELECTRICAL			
Dielectric breakdown	8	ASTM D149	KV/mm
Surface resistivity	>1010	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
CURE SCHEDULE			
Pot life @ 25°C	10~15	By LiPOLY	min
Surface dry @ 25°C	20~25	By LiPOLY	min
Cure @ 25°C	25~30	By LiPOLY	min
Cure @ 100°C	60	By LiPOLY	sec
Cure @ 120°C	20	By LiPOLY	sec

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the safety before using the material. We strongly recommend the purchaser pre-test the product and verify the performance of the product under the purchaser's specific or general uses. LiPOLY shall not be liable for incidental or consequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be lied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

PK605DM

Two-Part Thermal Conductive Gap Filler

LiPOLY PK605DM is a two-part liquid gap filler, fast cured at room temperature or elevated temperature. With a thermal conductivity of 5.0 W/m*K, PK605DM provides high thermal conductivity and low thermal impedance. It is ideally suited for dispensing using the dispensing robot or by syringe.

FEATURES

- / Thermal conductivity: 5.0 W/m*K
- / Fast curing in normal atmospheric temperature
- / Great reliability
- / Great sealing in low pressure

TYPICAL APPLICATION

- / Between CPU and heat sink
- / Between a component and heat sink
- / Power supplies
- / High speed mass storage drives
- / Telecommunication hardware
- / Electric vehicle& Automotive battery
- / 5G base station & infrastructure
- / EV electric vehicle

CONFIGURATIONS

/ Cartridges: 50ml, 400ml

/ Other special and custom sizes are available upon request

DISPENSING INSTRUCTIONS

Use the disposable plastic static mixing nozzles to mix parts A and B together to the desired ratio. Liquid gap fillers can be dispensed using an automatic dispensing machine or a manual dispensing tool that can be provided by LiPOLY upon request/purchase. The disposable plastic static mixing nozzles cannot be re-used.

STORAGE

Two-part liquid gap fillers should be stored in climate-controlled environments at or below 25°C. Keep liquid gap fillers away from direct sunlight and away from high-temperature environments.

PRESERVATION

It can be preserved for 24 months under the condition of unopened and under room temperature 25°C.

PRECAUTIONS

The two-part liquid gap filler may not cure properly if it comes into contact with certain substances, including amine, sulfur, organophosphorus compounds, and organotin compounds. Please avoid the following substances when handling: (N, P, S, Sn, Pb, Hg, Sb, Bi, As) Ensure a clean mixing container is used (e.g.: paper cup or plastic cup) before injecting the A and B parts into the mixing container. The plasticizer, wax from the cups, varnish or the epoxy from the oven may contaminate the A and B parts. You are reminded to pre-test the gap filler before using it.

PLEASE NOTE

It's recommended that the diameter of mixing tube outlet should be 3mm at least, which can solve the possible problem of poor fluidity caused by ambient temperature.

TYPICAL PROPERTIES

PROPERTY	PK605DM	TEST METHOD	UNIT
Color	Red (A part) White (B part)	Visual	-
Solid content	100% (Two-part : 100:100)	-	-
Viscosity A	110	ISO 3219	Pa.s
Viscosity B	80	ISO 3219	Pa.s
Density	3.3	ASTM D792	g/cm³
Shelf life	24 months	-	-
ROHS & REACH	Compliant	-	-
SOLID(AFTER CURE)			
Thermal conductivity	5.0	ASTM D5470	W/m*K
Thermal impedance@10mils BLT	0.092	ASTM D5470	°C-in²/ W
Thermal impedance@20mils BLT	0.171	ASTM D5470	°C-in²/ W
Thermal impedance@30mils BLT	0.254	ASTM D5470	°C-in²/ W
Hardness	85	ASTM D2240	Shore OO
Working temp (long term)	-60 ~ 200	-	°C
Operating ambient temp	20 ~ 30	-	°C
ELECTRICAL		'	1
Dielectric breakdown	8	ASTM D149	KV/mm
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
CURE SCHEDULE		1	
Pot life @ 25°C	10~15	By LiPOLY	min
Surface dry @ 25°C	20~25	By LiPOLY	min
Cure @ 25°C	25~30	By LiPOLY	min
Cure @ 100°C	40	By LiPOLY	sec
Cure @ 120°C	10	By LiPOLY	sec

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the safety before using the material. We strongly recommend the purchaser pre-test the product and verify the performance of the product under the purchaser's specific or general uses. LiPOLY shall not be liable for incidental or consequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be lied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

PK700DM

Two-Part Thermal Conductive Gap Filler

LiPOLY PK700DM is a two-part liquid gap filler, fast cured at room temperature or elevated temperature. With a thermal conductivity of 7.0 W/m*K, PK700DM provides high thermal conductivity and low thermal impedance. It is ideally suited for dispensing using the dispensing robot or by syringe.

FEATURES

- / Thermal conductivity: 7.0 W/m*K
- / Fast curing in normal atmospheric temperature
- / Great reliability
- / Great sealing in low pressure

TYPICAL APPLICATION

- / Between CPU and heat sink
- / Between a component and heat sink
- / Power supplies
- / High speed mass storage drives
- / Telecommunication hardware
- / Electric vehicle& Automotive battery
- / 5G base station & infrastructure
- / EV electric vehicle

CONFIGURATIONS

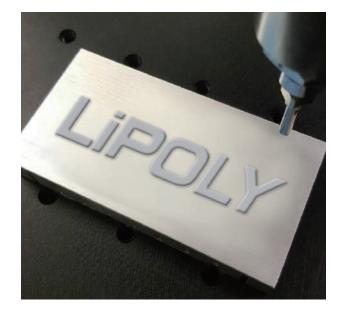
/ Cartridges: 50ml, 400ml

/ Other special and custom sizes are available upon request

DISPENSING INSTRUCTIONS

Use the disposable plastic static mixing nozzles to mix parts A and B together to the desired ratio. Liquid gap fillers can be dispensed using an automatic dispensing machine or a manual dispensing tool that can be provided by LiPOLY upon request/purchase. The disposable plastic static mixing nozzles cannot be re-used.

STORAGE


Two-part liquid gap fillers should be stored in climate-controlled environments at or below 25°C. Keep liquid gap fillers away from direct sunlight and away from high-temperature environments.

PRESERVATION

It can be preserved for 24 months under the condition of unopened and under room temperature 25°C.

PRECAUTIONS

The two-part liquid gap filler may not cure properly if it comes into contact with certain substances, including amine, sulfur, organophosphorus compounds, and organotin compounds. Please avoid the following substances when handling: (N, P, S, Sn, Pb, Hg, Sb, Bi, As) Ensure a clean mixing container is used (e.g.: paper cup or plastic cup) before injecting the A and B parts into the mixing container. The plasticizer, wax from the cups, varnish or the epoxy from the oven may contaminate the A and B parts. You are reminded to pre-test the gap filler before using it.

PLEASE NOTE

It's recommended that the diameter of mixing tube outlet should be 3mm at least, which can solve the possible problem of poor fluidity caused by ambient temperature.

TYPICAL PROPERTIES

PROPERTY	PK700DM	TEST METHOD	UNIT
Color	Gray (A part) White (B part)	Visual	-
Solid content	100% (Two-part : 100:100)	-	-
Viscosity A	315	ISO 3219	Pa.s
Viscosity B	285	ISO 3219	Pa.s
Density	2.8	ASTM D792	g/cm³
Shelf life	24 months	-	-
ROHS & REACH	Compliant	-	-
SOLID(AFTER CURE)			
Thermal conductivity	7.0	ASTM D5470	W/m*K
Thermal impedance@10mils BLT	0.058	ASTM D5470	°C-in²/ W
Thermal impedance@20mils BLT	0.115	ASTM D5470	°C-in²/ W
Thermal impedance@30mils BLT	0.170	ASTM D5470	°C-in²/ W
Hardness	60	ASTM D2240	Shore OO
Working temp (long term)	-60 ~ 200	-	°C
Operating ambient temp	20 ~ 30	-	°C
ELECTRICAL			
Dielectric breakdown	8	ASTM D149	KV/mm
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
CURE SCHEDULE			
Pot life @ 25°C	20~30	By LiPOLY	min
Surface dry @ 25°C	30~40	By LiPOLY	min
Cure @ 25°C	40~50	By LiPOLY	min
Cure @ 100°C	40	By LiPOLY	sec
Cure @ 120°C	10	By LiPOLY	sec

TPS586/TPS5868

Two-Part Thermal Conductive Sealing Glue

LiPOLY TPS586/5868 is a two-part sealing gap filler, provides low viscosity and high fluidity. The high deformation material, which can filling the gap closely, cover the tolerance, and has outstanding conductivity, makes is suitable for filling the peculiar gap.

FEATURES

- / Thermal conductivity: 1.5/3.0 W/m*K
- / Two-parts package and easy to use
- / Waterproof and air-tight
- / Thermally conductive vibration dampening

TYPICAL APPLICATION

- / Automotive electronics / Telecommunications
- / Computer and peripherals / 5G base station & infrastructure
- / Between any heat-generating component and a heat sink

/ EV electric vehicle

PRESERVATION

/ It can be preserved for 24 months under the condition of unopened and under room temperature 25°C

PRECAUTIONS

/ TPS586/TPS5868 If the interface has organic compounds such as Nitrogen, Phosphorous, Sulfur etc., and heavy metals ionic compound such as Tin, Lead, Mercury, Antimony, Bismuth, Arsenic etc., and Organometallic-salts etc., which will cause the gel incomplete curving even will be non-curved.

TYPICAL PROPERTIES

PROPERTY	TPS586	TPS5868	TEST METHOD	UNIT
Color	White (A part) Gray (B part)	White (A part) Gray (B part)	Visual	-
Resin base	Silicone	Silicone	-	-
A:B	100:100	100:100	-	-
Viscosity	5.0	8.0	ISO 3219	Pa.s
Density	2.1	2.8	ASTM D792	g/cm³
Application temperature	-60~180	-60~180	-	°C
Pot life	25°C / 1.5 hr	25°C / 1.0 hr	By LiPOLY	-
Surface dry	25°C / 2.0 hr	25°C / 1.5 hr	By LiPOLY	-
Curing condition 1	25°C / 2.5 hr	25°C / 2.0 hr	By LiPOLY	-
Curing condition 2	70°C / 25 min	70°C / 20 min	By LiPOLY	-
Curing condition 3	120°C / 1 min	120°C / 1 min	By LiPOLY	-
Hardness	6	5	ASTM D2240	Shore A
Shelf life	24 months	24 months	-	-
ROHS & REACH	Compliant	Compliant	-	-
ELECTRICAL				
Dielectric breakdown	14	14	ASTM D149	KV/mm
Volume resistivity	>1012	>1012	ASTM D257	Ohm-m
THERMAL				
Thermal conductivity	1.5	3.0	ASTM D5470	W/m*K

TPS589

Two-Part Thermal Conductive Sealing Glue

LiPOLY TPS589 is a two-part sealing gap filler, provides low viscosity and high fluidity. The high deformation material, which can be filling the gap closely, cover the tolerance, and has outstanding conductivity, makes is suitable for filling the peculiar gap.

FEATURES

- / Thermal conductivity: 0.8 W/m*K
- / Two-parts package and easy to use
- / Waterproof and air-tight
- / Thermally conductive vibration dampening

TYPICAL APPLICATION

- / Automotive electronics
- / Telecommunications
- / Computer and peripherals
- / Between any heat-generating component and a heat sink
- / 5G base station & infrastructure
- / EV electric vehicle

PRESERVATION

/ It can be preserved for 24 months under the condition of unopened and under room temperature 25°C.

PRECAUTIONS

/ TPS589 The principle of moisture hardening is to harden by reacting with moisture in the air at room temperature. The hardening process starts from the surface in contact with the air and hardens in the deep direction, so the hardening process is a little slow. The speed of hardening is related to temperature and humidity. When there is not enough water vapor in the use environment to react, it may not be completely hardened.

TYPICAL PROPERTIES

PROPERTY	TPS589	TEST METHOD	UNIT
Color	White	Visual	-
Resin base	Silicone	-	-
A:B	100:3	-	-
Viscosity	5.0	ISO 3219	Pa.s
Density	1.8	ASTM D792	g/cm³
Application temperature	-60~180	-	°C
Curing condition	25°C / 7day	By LiPOLY	-
Hardness	50	ASTM D2240	Shore A
Shelf life	24 months	-	-
ROHS & REACH	Compliant	-	-
ELECTRICAL			
Dielectric breakdown	14	ASTM D149	KV/mm
Volume resistivity	>1011	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	0.8	ASTM D5470	W/m*K

TPS31&TPS32

Lightweight Two-Part Thermal Conductive Sealing Glue

LiPOLY's TPS31/TPS32 is a low-density, two-part compound silicone base thermal conductive sealing material. It's low viscosity and excellent fluidity can tightly fill the gaps of electrical components and cover the tolerances between components. It has excellent thermal conductivity, low density and insulation properties.

FEATURES

/ Lightweight, Low Density, Thermal Conductivity 0.55 & 1.5 W/m*K

- / Medium-to-high hardness silicone material with excellent insulation and weather resistance
- / Suitable for automatic dispensing machine
- / TPS31 Moisture absorb hardening reaction at room temperature.
- / TPS32 Hardened at room temperature, also can be heated to accelerate the hardening reaction.

TYPICAL APPLICATION

 / Heat Dissipation & lightweight applications, such as Automotive electronic devices, Mobile communication device, Drone & aircraft, Sports and leisure electronic products, Portable game consoles, VR devices and etc.
 / 5G base station & infrastructure / EV electric vehicle

PRESERVATION

/ It can be preserved for 24 months under the condition of unopened and under room temperature 25°C.

PRECAUTIONS

/ TPS32 If the interface has organic compounds such as Nitrogen, Phosphorous, Sulfur etc., and heavy metals ionic compound such as Tin, Lead, Mercury, Antimony, Bismuth, Arsenic etc., and Organometallic-salts etc., which will cause the gel incomplete curving even will be non-curved.

TYPICAL PROPERTIES

PROPERTY	TPS31	TPS32	TEST METHOD	UNIT
Color	White (A part) Translucent (B part)	White(A part) Black(B part)	Visual	-
Resin Base	Silicone	Silicone	-	-
A:B	100:10	100:100	-	-
Viscosity	1.9	3.2	ISO 3219	Pa.s
Density	1.35	1.72	ASTM D792	g/cm³
Application temperature	-60~180	-60~180	-	°C
Working Time	25°C/30 min	25°C/1 hrs	By LiPOLY	-
Curing Condition 2	25°C/48 hrs	80°C/1 hrs	By LiPOLY	-
Curing Condition 3	-	25°C/24 hrs	By LiPOLY	-
Hardness	55	65	ASTM D2240	Shore A
Shelf Life	24 months	24 months	-	-
ROHS & REACH	Compliant	Compliant	-	-
ELECTRICAL		1	1	1
Dielectric breakdown	10	9	ASTM D149	KV/mm
Volume resistivity	>1013	>1013	ASTM D257	Ohm-m
THERMAL	1	ı 	ı	I
Thermal conductivity	0.55	1.5	ASTM D5470	W/m*K

TIM12

Thermal Conductive Die Attach Adhesive

LiPOLY's TIM12 is a two-part compound silicone base thermal conductive adhesive gel. which is mainly designed to provide efficient thermal transfer for the cooling of chip packaging. The high deformation properties perfectly fill small air gaps to eliminate tolerances. It's ideally suited for manual dispensing applicator and dispensing robot. Friendly design escape from high cost of cold-chain transportation and freeze preservation.)

FEATURES

- / Excellent thermal conductivity 2.0 W/m*K
- / No freeze preservation required.
- / Dispensable for serial manufacture
- / Adhesive for IC packaging design

TYPICAL APPLICATION

- / Designed to provide efficient thermal transfer for the cooling of chip packaging as TIM-1.
- / 5G base station & infrastructure
- / EV electric vehicle

TIM12 Heatsink TIM-2 Heat Spreader Chip Underfill Substrate

CONFIGURATIONS

/ Cartridges: 50ml

DISPENSING INSTRUCTIONS

Use the disposable plastic static mixing nozzles to mix parts A and B together to the desired ratio. Liquid gap fillers can be dispensed using an automatic dispensing machine or a manual dispensing tool that can be provided by LiPOLY upon request/purchase. The disposable plastic static mixing nozzles cannot be re-used.

STORAGE

Two-part liquid gap fillers should be stored in climate-controlled environments at or below 25°C. Keep liquid gap fillers away from direct sunlight and away from high-temperature environments.

PRESERVATION

It can be preserved for 24 months under the condition of unopened and under room temperature 25°C.

PRECAUTIONS

The two-part liquid gap filler may not cure properly if it comes into contact with certain substances, including amine, sulfur, organophosphorus compounds, and organotin compounds. Please avoid the following substances when handling: (N, P, S, Sn, Pb, Hg, Sb, Bi, As) Ensure a clean mixing container is used (e.g.: paper cup or plastic cup) before injecting the A and B parts into the mixing container. The plasticizer, wax from the cups, varnish or the epoxy from the oven may contaminate the A and B parts. You are reminded to pre-test the gap filler before using it.

PLEASE NOTE

It's recommended that the diameter of mixing tube outlet should be 3mm at least, which can solve the possible problem of poor fluidity caused by ambient temperature.

TYPICAL PROPERTIES

PROPERTY	TIM12	TEST METHOD	UNIT
Color	Gray (A part) White (B part)	Visual	-
Resin base	Silicone	-	-
Form	Grease	Visual	-
Viscosity A	190	ISO 3219	Pa.s
Viscosity B	150	ISO 3219	Pa.s
Density	2.7	ASTM D792	g/cm³
Application temperature	-50~180	-	°C
Working time	24 @ RT	By LiPOLY	hrs
Cure conditions	125°C / 90 mins	By LiPOLY	-
Volatile content	< 0.4	150°C x 24h	%
BLT	27	-	μm
Elongation	170	ASTM D412	%
Adhesive strength	0.64	-	-
ELECTRICAL			
Dielectric breakdown	25	ASTM D149	KV/mm
Surface resistivity	>1013	ASTM D257	Ohm
Volume resistivity	>1013	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	2.0	ASTM D5470	W/m*K

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the safety before using the material. We strongly recommend the purchaser pre-test the product and verify the performance of the product under the purchaser's specific or general uses. LiPOLY shall not be liable for incidental or consequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be lied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

TIM14

Thermal Conductive Die Attach Adhesive

LiPOLY's TIM14 is a two-part compound silicone base thermal conductive adhesive gel. which is mainly designed to provide efficient thermal transfer for the cooling of chip packaging. The high deformation properties perfectly fill small air gaps to eliminate tolerances. It's ideally suited for manual dispensing applicator and dispensing robot. Friendly design escape from high cost of cold-chain transportation and freeze preservation.)

FEATURES

- / Excellent thermal conductivity 4.0 W/m*K
- / No freeze preservation required
- / Dispensable for serial manufacture
- / Adhesive for IC packaging design

TYPICAL APPLICATION

- / Designed to provide efficient thermal transfer for the cooling of chip packaging as TIM-1.
- / 5G base station & infrastructure
- / EV electric vehicle

TIM14 Heatsink TIM-2 Heat Spreader Chip Underfill Substrate

CONFIGURATIONS

/ Cartridges: 50ml

DISPENSING INSTRUCTIONS

Use the disposable plastic static mixing nozzles to mix parts A and B together to the desired ratio. Liquid gap fillers can be dispensed using an automatic dispensing machine or a manual dispensing tool that can be provided by LiPOLY upon request/purchase. The disposable plastic static mixing nozzles cannot be re-used.

STORAGE

Two-part liquid gap fillers should be stored in climate-controlled environments at or below 25°C. Keep liquid gap fillers away from direct sunlight and away from high-temperature environments.

PRESERVATION

It can be preserved for 24 months under the condition of unopened and under room temperature 25°C.

PRECAUTIONS

The two-part liquid gap filler may not cure properly if it comes into contact with certain substances, including amine, sulfur, organophosphorus compounds, and organotin compounds. Please avoid the following substances when handling: (N, P, S, Sn, Pb, Hg, Sb, Bi, As) Ensure a clean mixing container is used (e.g.: paper cup or plastic cup) before injecting the A and B parts into the mixing container. The plasticizer, wax from the cups, varnish or the epoxy from the oven may contaminate the A and B parts. You are reminded to pre-test the gap filler before using it.

PLEASE NOTE

It's recommended that the diameter of mixing tube outlet should be 3mm at least, which can solve the possible problem of poor fluidity caused by ambient temperature.

TYPICAL PROPERTIES

PROPERTY	TIM14	TEST METHOD	UNIT
Color	Gray (A part) White (B part)	Visual	-
Resin base	Silicone	-	-
Form	Grease	Visual	-
Viscosity A	380	ISO 3219	Pa.s
Viscosity B	380	ISO 3219	Pa.s
Density	3.0	ASTM D792	g/cm³
Application temperature	-50~180	-	°C
Working time	24 @ RT	By LiPOLY	hrs
Cure conditions	125°C / 90 mins	By LiPOLY	-
Volatile content	< 0.4	150°C x 24h	%
BLT	27	-	μm
Elongation	110	ASTM D412	%
Adhesive strength	3.5	-	kgf/cm²
ELECTRICAL			
Dielectric breakdown	25	ASTM D149	KV/mm
Surface resistivity	>1013	ASTM D257	Ohm
Volume resistivity	>1013	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	4.0	ASTM D5470	W/m*K

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the safety before using the material. We strongly recommend the purchaser pre-test the product and verify the performance of the product under the purchaser's specific or general uses. LiPOLY shall not be liable for incidental or consequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be lied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

D2000

Two-Part Curable Thermal Grease

LiPOLY D2000 is a two-part curable thermal grease. It can be cured quickly at room temperature and high temperature without pump-out effect. It is a highly reliable material. With a thermal conductivity of 2.0 W/m*K, has low thermal resistance. It is ideally suited for dispensing using the dispensing robot or by syringe.

FEATURES

- / Thermal conductivity:2.0 W/m*K
- / Cured and Re-workable thermal Grease.
- / Without Pump-out and Dry out concern.
- / Great reliability
- / Low thermal resistance and thinner Bond Line Thickness.

TYPICAL APPLICATION

- / Between CPU and heat sink
- / Between a component and heat sink
- / Power supplies
- / High speed mass storage drives
- / Telecommunication hardware
- / Mobile devices
- / 5G base station & infrastructure
- / EV electric vehicle

CONFIGURATIONS

- / Cartridges: 50ml, 400ml
- / Other special and custom sizes are available upon request

DISPENSING INSTRUCTIONS

Use the disposable plastic static mixing nozzles to mix parts A and B together to the desired ratio. Liquid gap fillers can be dispensed using an automatic dispensing machine or a manual dispensing tool that can be provided by LiPOLY upon request/purchase. The disposable plastic static mixing nozzles cannot be re-used.

STORAGE

Two-part liquid gap fillers should be stored in climate-controlled environments at or below 25°C. Keep liquid gap fillers away from direct sunlight and away from high-temperature environments.

PRESERVATION

It can be preserved for 24 months under the condition of unopened and under room temperature 25°C.

PRECAUTIONS

The two-part liquid gap filler may not cure properly if it comes into contact with certain substances, including amine, sulfur, organophosphorus compounds, and organotin compounds. Please avoid the following substances when handling: (N, P, S, Sn, Pb, Hg, Sb, Bi, As) Ensure a clean mixing container is used (e.g.: paper cup or plastic cup) before injecting the A and B parts into the mixing container. The plasticizer, wax from the cups, varnish or the epoxy from the oven may contaminate the A and B parts. You are reminded to pre-test the gap filler before using it.

PLEASE NOTE

It's recommended that the diameter of mixing tube outlet should be 3mm at least, which can solve the possible problem of poor fluidity caused by ambient temperature.

TYPICAL PROPERTIES

PROPERTY	D2000	TEST METHOD	UNIT
Color	White (A part) Gray (B part)	Visual	-
Solid content	100% (Two-part : 100:100)	-	-
Viscosity A	95	ISO 3219	Pa.s
Viscosity B	95	ISO 3219	Pa.s
Density	2.8	ASTM D792	g/cm³
Shelf life	24 months	-	-
ROHS & REACH	Compliant	-	-
SOLID(AFTER CURE)			1
Thermal conductivity	2.0	ASTM D5470	W/m*K
Thermal impedance@2mils BLT	0.042	ASTM D5470	°C-in²/ W
Bond line thickness	50	-	μm
Hardness	75	ASTM D2240	Shore OO
Heat capacity	1.0	ASTM E1269	J/g*K
Volume resistivity	>1012	ASTM D257	Ohm-m
Dielectric breakdown	14	ASTM D149	KV/mm
Working temp (long term)	-60 ~ 200	-	°C
Working temp (short term)	288	-	°C
Operating ambient temp	20 ~ 30	-	°C
CURE SCHEDULE			
Pot life @ 25°C	10~15	By LiPOLY	min
Surface dry @ 25°C	25~30	By LiPOLY	min
Cure @ 25°C	35~40	By LiPOLY	min
Cure @ 100°C	80	By LiPOLY	sec
Cure @ 120°C	30	By LiPOLY	sec
-		-	

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the safety before using the material. We strongly recommend the purchaser pre-test the product and verify the performance of the product under the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material damages of any kind. All LiPOLY moducts are odd in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

TT3000

Nano Thermal Grease

LiPOLY TT3000 is a Nano type thermal interface material based on a unique formula. TT3000's formulation is solvent-free. We used a unique silicone oil which interacts with thermally conductive fillers, making the compounds extremely stable, preventing pump-out problems and other common failure mechanisms. TT3000 has high thermal conductivity, low thermal resistance, improving the components performance as well as the product lifecycle.

FEATURES

- / Thermal conductivity:6.0 W/m*K
- / Excellent thermal conductivity
- / Stable and homogeneous compound to ensure thermal performance
- / Formula can fill the gap at low pressure
- / High stability and reliability
- / Solvent-free formula
- / The product is qualified for ROHS and REACH

TYPICAL APPLICATION

- / CPU and chip coolers
- / Switching power supplies
- / Between any heat-generating component and heat Sink
- / 5G base station & infrastructure
- / EV electric vehicle

CONFIGURATIONS

- / Cartridges: 50ml
- / Tinplate Can: 1kg
- / Other special and custom sizes are available upon request

PRESERVATION

It can be preserved for 60 months under the condition of unopened and under room temperature 25℃.

PROPERTY	TT3000	TEST METHOD	UNIT
Color	White	Visual	-
Resin base	Silicone	-	-
Filler	Non-Metal	-	-
Viscosity	300	ISO 3219	Pa.s
Density	3.3	ASTM D792	g/cm³
Application temperature	-60~180	-	°C
Bond line thickness	10	-	μm
Shelf life	60 months	-	-
ROHS & REACH	Compliant	-	-
ELECTRICAL			
Dielectric breakdown	8	ASTM D149	KV/mm
Volume resistivity	>1012	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	6.0	ASTM D5470	W/m*K
Thermal impedance@50psi	0.007	ASTM D5470	°C-in²/ W
Thermal impedance@50psi	5.0	ASTM D5470	°C-mm²/ W

G3380A/B/C/D

Thermal Grease Series

LiPOLY G3380 thermal interface grease has low thermal resistance and great thermal conductivity. G3380 has been used extensively in Consumer electronics and Microprocessors for their thermal control techniques. The grease can cover several coats on the component interface. When the component's temperature rises, the grease stickiness will decrease, which can moisten the interface components.

FEATURES

- / Thermal conductivity: 1.3 / 3.2 / 4.5 /6.0 W/m*K
- / Low thermal impedance
- / Can be applied manually dispensed or screen printed
- / Low minimum bond line

TYPICAL APPLICATION

/ LED appliance / EV electric vehicle / CPU and chip coolers / Switching power supplies / 5G base station & infrastructure / Between any heat-generating component and heat sink

CONFIGURATIONS

/ Cartridges: 50ml / Tinplate Can: 1kg / Other special and custom sizes are available upon request

PRESERVATION

63

It can be preserved for 60 months under the condition of unopened and under room temperature 25° C.

PROPERTY	G3380A	G3380B	G3380C	G3380D	TEST METHOD	UNIT
Color	White	Gray	Gray	Gray	Visual	-
Resin base	Silicone	Silicone	Silicone	Silicone	-	-
Filler	Non-Metal	Non-Metal	Metal	Metal	-	-
Viscosity	16.5	130	126	136	ISO 3219	Pa.s
Density	2.2	2.7	2.0	2.0	ASTM D792	g/cm³
Application temperature	-60~180	-60~180	-60~180	-60~180	-	°C
Bond line thickness	55	33	30	30	-	μm
Shelf life	60 months	60 months	60 months	60 months	-	-
ROHS & REACH	Compliant	Compliant	Compliant	Compliant	-	-
ELECTRICAL						
Dielectric breakdown	14	11	N/A	N/A	ASTM D149	KV/mm
Volume resistivity	>1011	>1011	N/A	N/A	ASTM D257	Ohm-m
THERMAL	'	'		'	'	1
Thermal conductivity	1.3	3.2	4.5	6.0	ASTM D5470	W/m*K
Thermal impedance@50psi	0.05	0.03	0.02	0.01	ASTM D5470	°C-in²/ W
Thermal impedance@50psi	32.2	22.5	12.9	6.0	ASTM D5470	°C-mm²/ W

G3380A/B/K/T

Thermal Grease Series

LiPOLY G3380 thermal interface grease has low thermal resistance and great thermal conductivity. G3380 has been used extensively in Consumer electronics and Microprocessors for their thermal control techniques. The grease can cover several coats on the component interface. When the component's temperature rises, the grease stickiness will decrease, which can moisten the interface components.

FEATURES

- / Thermal conductivity: 1.3 / 3.2 / 4.5 /6.0 W/m*K
- / Low thermal impedance
- / Can be applied manually dispensed or screen printed
- / Low minimum bond line

TYPICAL APPLICATION

/ LED appliance / EV electric vehicle / CPU and chip coolers / Switching power supplies / 5G base station & infrastructure / Between any heat-generating component and heat sink

CONFIGURATIONS

/ Cartridges: 50ml / Tinplate Can: 1kg / Other special and custom sizes are available upon request

PRESERVATION

It can be preserved for 60 months under the condition of unopened and under room temperature 25° C.

PROPERTY	G3380A	G3380B	G3380K	G3380T	TEST METHOD	UNIT
Color	White	Gray	Gray	Gray	Visual	-
Resin base	Silicone	Silicone	Silicone	Silicone	-	-
Filler	Non-Metal	Non-Metal	Non-Metal	Non-Metal	-	-
Viscosity	16.5	130	104	181	ISO 3219	Pa.s
Density	2.2	2.7	2.6	2.7	ASTM D792	g/cm³
Application temperature	-60~180	-60~180	-60~180	-60~180	-	°C
Bond line thickness	55	33	30	30	-	μm
Shelf life	60 months	60 months	60 months	60 months	-	-
ROHS & REACH	Compliant	Compliant	Compliant	Compliant	-	-
ELECTRICAL		·	·			
Dielectric breakdown	14	11	11	11	ASTM D149	KV/mm
Volume resistivity	>1011	>1011	>1011	>1011	ASTM D257	Ohm-m
THERMAL		1	1	1	1	1
Thermal conductivity	1.3	3.2	4.5	6.0	ASTM D5470	W/m*K
Thermal impedance@50psi	0.05	0.03	0.02	0.01	ASTM D5470	°C-in²/ W
Thermal impedance@50psi	32.2	22.5	12.9	6.0	ASTM D5470	°C-mm²/ W

N-putty

Non-Silicone Thermal Conductive Putty

LiPOLY N-putty series is a non-silicon thermally conductive material without volatilization of low molecular siloxane, and low total volatile gas. With a thermal conductivity of 3.5 W/m*K, the high deformation can perfectly fill small air gaps to eliminate tolerances. It also can overcome overflow and drying problems to increase the thermal conductivity. N-putty is a great alternative to thermal grease and ideally suited for dispensing using the dispensing robot.

FEATURES

- / Thermal conductivity:3.5 W/m*K
- / Bond line thickness:100-1000 μm
- / Non-silicone resin materials
- / Designed to remove manufacturing tolerances
- / Does not produce stress on delicate components
- / No vertical flow
- / Dispensable for serial manufacture
- / For any high compression and low stress application

TYPICAL APPLICATION

- / Between CPU and heat sink
- / Between a component and heat sink
- / High speed mass storage drives
- / Telecommunication hardware
- / Flat-panel displays
- / Set-top box
- / IP CAM

/ 5G base station & infrastructure

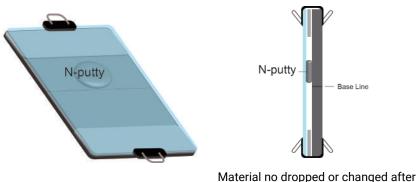
/ EV electric vehicle

CONFIGURATIONS

/ Cartridges: 30ml, 55ml, 330ml / Bucket: 1kg, 25kg

PRESERVATION

It can be preserved for 60 months under the condition of unopened and under room temperature 25°C.



TYPICAL PROPERTIES

PROPERTY	N-putty	TEST METHOD	UNIT
Color	Gray	Visual	-
Resin base	Non-Silicone	-	-
Viscosity	15000	DIN 53018	Pa.s
Density	3.0	ASTM D792	g/cm³
Application temperature	-60~150	-	°C
Bond line thickness	100~1000	-	μm
Shelf life	60 months	-	-
ROHS & REACH	Compliant	-	-
ELECTRICAL			
Dielectric breakdown	12	ASTM D149	KV/mm
Volume resistivity	>1013	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	3.5	ASTM D5470	W/m*K
Thermal impedance@10psi	0.066	ASTM D5470	°C-in²/ W
Thermal impedance@30psi	0.059	ASTM D5470	°C-in²/ W
Thermal impedance@50psi	0.051	ASTM D5470	°C-in²/ W

VERTICAL RELIABILITY

Using 1.0mm pad as a gap control, put the putty between the aluminum and the glass panel mark the initial position. Then, place it in the oven with 125°C for 1,000 hours and observe its displacement after reliability test

high temperature aging testing

N-putty2

Non-Silicone Thermal Conductive Putty

LiPOLY N-putty2 series is a non-silicon thermally conductive material without volatilization of low molecular siloxane, and low total volatile gas. With a thermal conductivity of 5.0 W/m*K, the high deformation can perfectly fill small air gaps to eliminate tolerances. It also can overcome overflow and drying problems to increase the thermal conductivity. N-putty2 is a great alternative to thermal grease and ideally suited for dispensing using the dispensing robot.

FEATURES

- / Thermal conductivity:5.0 W/m*K
- / Bond line thickness:100-1000 μm
- / Non-silicone resin materials
- / Designed to remove manufacturing tolerances
- / Does not produce stress on delicate components
- / No vertical flow
- / Dispensable for serial manufacture
- / For any high compression and low stress application

TYPICAL APPLICATION

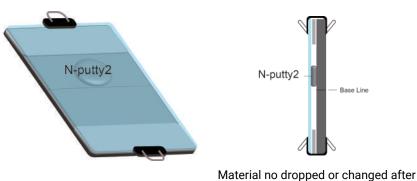
- / Between CPU and heat sink
- / Between a component and heat sink
- / High speed mass storage drives
- / Telecommunication hardware
- / Flat-panel displays
- / Set-top box
- / IP CAM
- / 5G base station & infrastructure
- / EV electric vehicle

CONFIGURATIONS

/ Cartridges: 30ml, 55ml, 330ml / Bucket: 1kg, 25kg

PRESERVATION

It can be preserved for 60 months under the condition of unopened and under room temperature 25°C.



TYPICAL PROPERTIES

PROPERTY	N-putty2	TEST METHOD	UNIT
Color	Gray	Visual	-
Resin base	Non-Silicone	-	-
Viscosity	15000	DIN 53018	Pa.s
Density	3.2	ASTM D792	g/cm³
Application temperature	-60~150	-	°C
Bond line thickness	100~1000	-	μm
Shelf life	60 months	-	-
ROHS & REACH	Compliant	-	-
ELECTRICAL			
Dielectric breakdown	12	ASTM D149	KV/mm
Volume resistivity	>1013	ASTM D257	Ohm-m
THERMAL	'		
Thermal conductivity	5.0	ASTM D5470	W/m*K
Thermal impedance@10psi	0.045	ASTM D5470	°C-in²/ W
Thermal impedance@30psi	0.040	ASTM D5470	°C-in²/ W
Thermal impedance@50psi	0.036	ASTM D5470	°C-in²/ W

VERTICAL RELIABILITY

Using 1.0mm pad as a gap control, put the putty between the aluminum and the glass panel mark the initial position. Then, place it in the oven with 125°C for 1,000 hours and observe its displacement after reliability test

high temperature aging testing

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser meeds to evaluate and verify the estimates of the product under the purchaser's pacific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchandards for LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental acrossquential damages of any kind. All LiPOLY products are specific or general uses. LiPOLY shall not be liable for incidental acrossquential damages of any kind. All LiPOLY products are specific or general uses. LiPOLY shall not be liable for incidental acrossquential damages of any kind. All LiPOLY products are specific or general uses. LiPOLY shall not be liable for incidental acrossquential damages of any kind. All LiPOLY products are specific or general uses. LiPOLY shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

EPDM20

Non-Silicone Two-Part Thermal Conductive Adhesive

LiPOLY EPDM20 is a silicone-free two-part liquid caulking agent that does not volatilize low-molecular-weight siloxane. With high viscosity and good adhesion, it can cure quickly at room temperature or elevated temperature. With a thermal conductivity of 2.2 W/m*K, EPDM20 provides high thermal conductivity and low thermal impedance. It is ideally suited for dispensing using the dispensing robot or by syringe.

FEATURES

- / Thermal conductivity: 2.2 W/m*K
- / Can be applied with dispenser
- / Room Temperature curing or heating curing
- / Low compression stress during assembly
- / Excellent adhesion to metal & PCB

TYPICAL APPLICATION

- / Electronic components: IC \ CPU MOS \ Mother Board \ Wireless Hub Telecom Device \ Automotive electronics \ Computer \ Peripherals and High frequency magnetic inductor
- / Between any heat-generating component and a heat sink.
- / 5G base station & infrastructure
- / EV electric vehicle

CONFIGURATIONS

- / Cartridges:50ml, 400ml
- / Other special and custom sizes are available upon request

PRESERVATION

It can be preserved for 24 months under the condition of unopened and under room temperature 25° C.

PLEASE NOTE

- / It is recommended to preheat the material to 40°C for 20 minutes or 50°C for 10 minutes if ambient temperature is less than 25°C for better extrusion and mixing.
- / It's recommended that the diameter of mixing tube outlet should be 3mm at least, which can solve the possible problem of poor fluidity caused by ambient temperature.

TYPICAL PROPERTIES

PROPERTY	EPDM20	TEST METHOD	UNIT
Color	Black Gray (A part) Black (B part)	Visual	-
Resin base	Ероху	-	-
A:B	100:100	-	-
Viscosity A	265	ISO 3219	Pa.s
Viscosity B	252	ISO 3219	Pa.s
Thixotropic Index	4.1	ISO 3219	-
Density	2.7	ASTM D792	g/cm³
Application temperature	-40~120	-	°C
Surface dry	25°C/55 min	By LiPOLY	-
Curing condition	25°C/4 hrs	By LiPOLY	-
Hardness	90	ASTM D2240	Shore A
Elongation at break	<1	ISO527	%
Tensile strength	65	ISO527	N/cm ²
Lap shear to aluminum	350	ASTM D1002	N/cm ²
Shelf life	24 months	-	-
ROHS & REACH	Compliant	-	-
ELECTRICAL			
Dielectric breakdown	14	ASTM D149	KV/mm
Volume resistivity	>1011	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	2.2	ISO 22007-2	W/m*K
			-

EPDM30

Non-Silicone Two-Part Thermal Conductive Adhesive

LiPOLY EPDM30 is a silicone-free two-part liquid caulking agent that does not volatilize low-molecular-weight siloxane. With high viscosity and good adhesion, it can cure quickly at room temperature or elevated temperature. With a thermal conductivity of 3.0 W/m*K, EPDM30 provides high thermal conductivity and low thermal impedance. It is ideally suited for dispensing using the dispensing robot or by syringe.

FEATURES

- / Thermal conductivity: 3.0 W/m*K
- / Can be applied with dispenser
- / Room Temperature curing or heating curing
- / Low compression stress during assembly
- / Excellent adhesion to metal & PCB

TYPICAL APPLICATION

- / Electronic components: IC \ CPU MOS \ Mother Board \ Wireless Hub Telecom Device \ Automotive electronics \ Computer \ Peripherals and High frequency magnetic inductor
- / Between any heat-generating component and a heat sink.
- / 5G base station & infrastructure
- / EV electric vehicle

CONFIGURATIONS

- / Cartridges:50ml, 400ml
- / Other special and custom sizes are available upon request

PRESERVATION

It can be preserved for 24 months under the condition of unopened and under room temperature 25°C.

PLEASE NOTE

- / It is recommended to preheat the material to 40°C for 20 minutes or 50°C for 10 minutes if ambient temperature is less than 25°C for better extrusion and mixing.
- / It's recommended that the diameter of mixing tube outlet should be 3mm at least, which can solve the possible problem of poor fluidity caused by ambient temperature.

TYPICAL PROPERTIES

	PROPERTY	EPDM30	TEST METHOD	UNIT
	Color	Black Gray (A part) Black (B part)	Visual	-
	Resin base	Ероху	-	-
	A:B	100:100	-	-
	Viscosity A	270	ISO 3219	Pa.s
	Viscosity B	240	ISO 3219	Pa.s
	Thixotropic Index	4.3	ISO 3219	-
	Density	2.8	ASTM D792	g/cm³
	Application temperature	-40~120	-	°C
	Surface dry	25°C/50 min	By LiPOLY	-
	Curing condition	25°C/4 hrs	By LiPOLY	-
	Hardness	90	ASTM D2240	Shore A
	Elongation at break	<1	ISO527	%
	Tensile strength	60	ISO527	N/cm ²
	Lap shear to aluminum	300	ASTM D1002	N/cm ²
	Shelf life	24 months	-	-
	ROHS & REACH	Compliant	-	-
	ELECTRICAL			
	Dielectric breakdown	14	ASTM D149	KV/mm
	Volume resistivity	>1011	ASTM D257	Ohm-m
	THERMAL			
	Thermal conductivity	3.0	ISO 22007-2	W/m*K
_				

EP770

Non-Silicone Two-Part Thermal Conductive Sealing Glue

LiPOLY EP770 is a silicone-free two-part sealing gap filler and caulking agent without low molecular siloxane volatilization. EP770 provides low viscosity and high fluidity. The high deformation material, which can be filling the gap closely, cover the tolerance, and has outstanding conductivity, makes is suitable for filling the peculiar gap.

FEATURES

- / Thermal conductivity: 2.5 W/m*K
- / Thermally conductive vibration dampening
- / Low mixing viscosity
- / Extremely low Shrinkage rate 0.01%.
- / Epoxy Based material with high hardness for support
- / Slow sedimentation rate due to Resin & powder mixing perfectly via superb processing technology.
 It leads EP770 material easy to mix and disperse

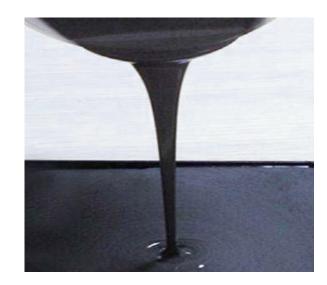
TYPICAL APPLICATION

/Motor: Torque motor > Linear Motor Servo motor /IGBT module /Electronic components: IC > CPU MOS > Mother Board /Wireless Hub /Automotive electronics /Between any heat-generating component and a heat sink /5G base station & infrastructure / EV electric vehicle

CONFIGURATIONS

- / Tinplate Can:1 kg
- / Other special and custom sizes are available upon request

PRESERVATION


It can be preserved for 24 months under the condition of unopened and under room temperature 25°C.

PLEASE NOTE

It is recommended to preheat the material to 40°C for 20 minutes or 50°C for 10 minutes if ambient temperature is less than 25°C for better extrusion and mixing.

TYPICAL PROPERTIES

PROPERTY	EP770	TEST METHOD	UNIT
Color	Black	Visual	-
Resin base	Ероху	-	-
A:B	100:10	-	-
Viscosity A	350	ISO 3219	Pa.s
Viscosity mixed	5	ISO 3219	Pa.s
Shrinkage rate	0.01	ASTM D2566	%
Density	1.8	ASTM D792	g/cm³
Application temperature	-60~150	-	°C
Curing condition 1	80°C/1.5 hrs	By LiPOLY	-
Curing condition 2	25°C/35 hrs	By LiPOLY	-
Hardness	80	ASTM D2240	Shore A
Tensile strength	73	ISO527	N/cm ²
Lap shear to aluminum	412	ASTM D1002	N/cm ²
Shelf life	24 months	-	-
ROHS & REACH	Compliant	-	-
ELECTRICAL			
Dielectric breakdown	14	ASTM D149	KV/mm
Volume resistivity	>1011	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	2.5	ASTM D5470	W/m*K

G3380NA/NB/NC

Non-Silicone Thermal Grease Series

LiPOLY G3380N is made of non-silicon resin material, no low-molecular siloxane volatilization, and will not pollute the optical surface. Low thermal resistance and great thermal conductivity. G3380N has been used extensively in Consumer electronics and Microprocessors for their thermal control techniques. The grease can cover several coats on the component interface. When the component's temperature rises, the grease stickiness will decrease, which can moisten the interface components.

FEATURES

/ Thermal conductivity: 1.3 / 3.2 / 4.5 W/m*K / No outgassing / Low thermal impedance

TYPICAL APPLICATION

- / CPU and chip coolers
- / Switching power supplies
- / LED appliance
- / Between any heat-generating component and heat sink
- / 5G base station & infrastructure
- / EV electric vehicle

CONFIGURATIONS

/ Cartridges: 50ml

/ Tinplate Can:1kg

69

/ Other special and custom sizes are available upon request

PRESERVATION

It can be preserved for 60 months under the condition of unopened and under room temperature 25°C.

TYPICAL PROPERTIES

PROPERTY	G3380NA	G3380NB	G3380NC	TEST METHOD	UNIT
Color	White	Gray	Gray	Visual	-
Resin base	Non-Silicone	Non-Silicone	Non-Silicone	-	-
Filler	Non-Metal	Metal	Metal	-	-
Viscosity	96	43	93	ISO 3219	Pa.s
Density	2.2	1.9	2.1	ASTM D792	g/cm³
Application temperature	-60~150	-60~150	-60~150	-	°C
Bond line thickness	55	33	30	-	μm
Shelf life	60 months	60 months	60 months	-	-
ROHS & REACH	Compliant	Compliant	Compliant	-	-
ELECTRICAL					
Dielectric breakdown	14	N/A	N/A	ASTM D149	KV/mm
Volume resistivity	>1011	N/A	N/A	ASTM D257	Ohm-m
THERMAL					
Thermal conductivity	1.3	3.2	4.5	ASTM D5470	W/m*K
Thermal impedance@50psi	0.05	0.03	0.02	ASTM D5470	°C-in²/ W
Thermal impedance@50psi	32.2	22.5	12.9	ASTM D5470	°C-mm²/ W

TEM96A

Thermal Conductive RF Absorber Pad

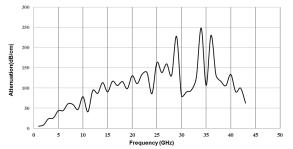
LiPOLY TEM96A is a thermally conductive absorber based upon soft magnetic materials dispersed in a polymeric resin. It has a thermal conductivity of 2.0 W/m*K and dissipates electromagnetic radiation rapidly to mitigate against EMI issues.

FEATURES

- / Thermal conductivity: 2.0 W/m*K
- / Excellent absorption characteristics
- / Naturally tacky
- / Reworkable

TYPICAL APPLICATION

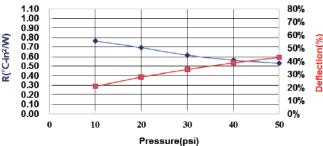
- / IC, CPU, MOS, LED, M/B, Heat sink
 / LCD-TV, Notebook PC, PC, Telecom device, Wireless hub
- / DDR II module, DVD applications, Hand-set applications
- / 5G base station & infrastructure
- / EV electric vehicle


SPECIFICATIONS

- / Sheet form
- / Die-cut parts

FREQUENCY APPLICATION

2.4 GHz Wi-Fi Router , Bluetooth
3.5 GHz 5G Mobile Networks
5.0 GHz Wi-Fi Router
12~18 GHz Low Earth Orbit (LEO) System
28 GHz 5G Mobile Networks
39 GHz 5G Mobile Networks


Attenuation

TYPICAL PROPERTIES

PROPERTY	TEM96A	TEST METHOD	UNIT
Color	Dark Gray	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	4.4	ASTM D792	g/cm³
Hardness	40	ASTM D2240	Shore OO
TML	0.14	By LiPOLY	%
Water absorption	0.04	ASTM D570	%
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	21	ASTM D5470 modify	%
Deflection @20 psi	28	ASTM D5470 modify	%
Deflection @30 psi	34	ASTM D5470 modify	%
Deflection @40 psi	39	ASTM D5470 modify	%
Deflection @50 psi	43	ASTM D5470 modify	%
EMI Attenuation @1.0mm			
EMI attenuation@ 2.4 GHz	16.6	ASTM D4935 modify	dB/cm
EMI attenuation@ 3.5 GHz	24.0	ASTM D4935 modify	dB/cm
EMI attenuation@ 5.0 GHz	43.5	ASTM D4935 modify	dB/cm
EMI attenuation@ 12 GHz	93.8	ASTM D4935 modify	dB/cm
EMI attenuation@ 18 GHz	116	ASTM D4935 modify	dB/cm
EMI attenuation@ 28 GHz	131	ASTM D4935 modify	dB/cm
EMI attenuation@ 39 GHz	106	ASTM D4935 modify	dB/cm
ELECTRICAL			
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	2.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.762	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.692	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.614	ASTM D5470	°C-in²/ W
Thermal impedance@40 psi	0.562	ASTM D5470	°C-in²/ W
Thermal impedance@50 psi	0.530	ASTM D5470	°C-in²/ W

Thermal Resistance vs. Pressure vs. Deflection

TEM96B

Thermal Conductive RF Absorber Pad

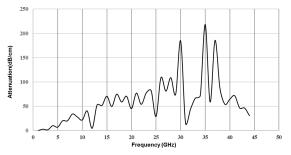
LiPOLY TEM96B is a thermally conductive absorber based upon soft magnetic materials dispersed in a polymeric resin. It has a thermal conductivity of 3.0 W/m*K and dissipates electromagnetic radiation rapidly to mitigate against EMI issues.

FEATURES

- / Thermal conductivity: 3.0 W/m*K
- / Excellent absorption characteristics
- / Naturally tacky
- / Reworkable

TYPICAL APPLICATION

- / IC, CPU, MOS, LED, M/B, Heat sink / LCD-TV, Notebook PC, PC, Telecom device, Wireless hub
- / DDR II module, DVD applications, Hand-set applications
- / 5G base station & infrastructure
- / EV electric vehicle


SPECIFICATIONS

- / Sheet form
- / Die-cut parts

FREQUENCY APPLICATION

2.4 GHz Wi-Fi Router , Bluetooth
3.5 GHz 5G Mobile Networks
5.0 GHz Wi-Fi Router
12~18 GHz Low Earth Orbit (LEO) System
28 GHz 5G Mobile Networks
39 GHz 5G Mobile Networks

Attenuation

TYPICAL PROPERTIES

PROPERTY	TEM96B	TEST METHOD	UNIT
Color	Dark Gray	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	3.9	ASTM D792	g/cm³
Hardness	45	ASTM D2240	Shore OO
TML	0.07	By LiPOLY	%
Water absorption	0.04	ASTM D570	%
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	7	ASTM D5470 modify	%
Deflection @20 psi	12	ASTM D5470 modify	%
Deflection @30 psi	16	ASTM D5470 modify	%
Deflection @40 psi	21	ASTM D5470 modify	%
Deflection @50 psi	25	ASTM D5470 modify	%
EMI Attenuation @1.0mm			
EMI attenuation@ 2.4 GHz	7.0	ASTM D4935 modify	dB/cm
EMI attenuation@ 3.5 GHz	8.6	ASTM D4935 modify	dB/cm
EMI attenuation@ 5.0 GHz	20.3	ASTM D4935 modify	dB/cm
EMI attenuation@ 12 GHz	52.5	ASTM D4935 modify	dB/cm
EMI attenuation@ 18 GHz	70.8	ASTM D4935 modify	dB/cm
EMI attenuation@ 28 GHz	75.0	ASTM D4935 modify	dB/cm
EMI attenuation@ 39 GHz	64.4	ASTM D4935 modify	dB/cm
ELECTRICAL			
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	3.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.634	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.606	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.579	ASTM D5470	°C-in²/ W
Thermal impedance@40 psi	0.551	ASTM D5470	°C-in²/ W
Thermal impedance@50 psi	0.516	ASTM D5470	°C-in²/ W

Thermal Resistance vs. Pressure vs. Deflection

TEM96C

Thermal Conductive RF Absorber Pad

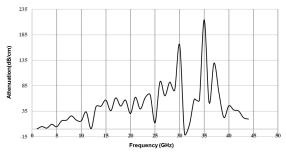
LiPOLY TEM96C is a thermally conductive absorber based upon soft magnetic materials dispersed in a polymeric resin. It has a thermal conductivity of 4.0 W/m*K and dissipates electromagnetic radiation rapidly to mitigate against EMI issues.

FEATURES

- / Thermal conductivity: 4.0 W/m*K
- / Excellent absorption characteristics
- / Naturally tacky
- / Reworkable

TYPICAL APPLICATION

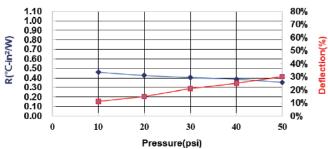
- / IC, CPU, MOS, LED, M/B, Heat sink
 / LCD-TV, Notebook PC, PC, Telecom device, Wireless hub
- / DDR II module, DVD applications, Hand-set applications
- / 5G base station & infrastructure
- / EV electric vehicle


SPECIFICATIONS

- / Sheet form
- / Die-cut parts

FREQUENCY APPLICATION

2.4 GHz Wi-Fi Router , Bluetooth
3.5 GHz 5G Mobile Networks
5.0 GHz Wi-Fi Router
12~18 GHz Low Earth Orbit (LEO) System
28 GHz 5G Mobile Networks
39 GHz 5G Mobile Networks


Attenuation

TYPICAL PROPERTIES

PROPERTY	TEM96C	TEST METHOD	UNIT
Color	Dark Gray	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	3.6	ASTM D792	g/cm³
Hardness	55	ASTM D2240	Shore OO
TML	0.04	By LiPOLY	%
Water absorption	0.04	ASTM D570	%
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	11	ASTM D5470 modify	%
Deflection @20 psi	15	ASTM D5470 modify	%
Deflection @30 psi	21	ASTM D5470 modify	%
Deflection @40 psi	25	ASTM D5470 modify	%
Deflection @50 psi	30	ASTM D5470 modify	%
EMI Attenuation @1.0mm			
EMI attenuation@ 2.4 GHz	7.0	ASTM D4935 modify	dB/cm
EMI attenuation@ 3.5 GHz	6.7	ASTM D4935 modify	dB/cm
EMI attenuation@ 5.0 GHz	15.8	ASTM D4935 modify	dB/cm
EMI attenuation@ 12 GHz	43.7	ASTM D4935 modify	dB/cm
EMI attenuation@ 18 GHz	56.8	ASTM D4935 modify	dB/cm
EMI attenuation@ 28 GHz	76.6	ASTM D4935 modify	dB/cm
EMI attenuation@ 39 GHz	45.5	ASTM D4935 modify	dB/cm
ELECTRICAL			
Surface resistivity	>1011	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	4.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.462	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.426	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.404	ASTM D5470	°C-in²/ W
Thermal impedance@40 psi	0.387	ASTM D5470	°C-in²/ W
Thermal impedance@50 psi	0.353	ASTM D5470	°C-in²/ W

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the start werfly the start werfly the start werfly the start werfly the performance of the product tart werfly the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions is disting them effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

N-TEM52

Non-Silicone Thermal Conductive RF Absorber Pad

LiPOLY N-TEM52 is a thermally conductive absorber based upon soft magnetic materials dispersed in a non-silicone resin. It has a thermal conductivity of 2.0 W/m*K and dissipates electromagnetic radia- tion rapidly to mitigate against EMI issues.

FEATURES

- / Thermal conductivity: 2.0 W/m*K
- / Excellent absorption characteristics
- / Naturally tacky
- / Reworkable

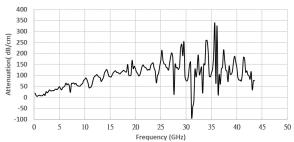
TYPICAL APPLICATION

- / IC, CPU, MOS, LED, M/B, Heat sink / LCD-TV, Notebook PC, PC,
- Telecom device, Wireless hub / DDR II module, DVD applications,
- Hand-set applications
- / 5G base station & infrastructure
- / EV electric vehicle

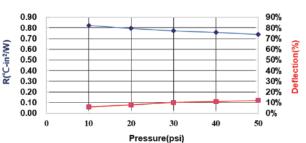
SPECIFICATIONS

- / Sheet form
- / Die-cut parts

73


FREQUENCY APPLICATION

2.4 GHz Wi-Fi Router , Bluetooth
3.5 GHz 5G Mobile Networks
5.0 GHz Wi-Fi Router
6.0 GHz Wi-Fi Router
12~18 GHz Low Earth Orbit (LEO) System
28 GHz 5G Mobile Networks
39 GHz 5G Mobile Networks


TYPICAL PROPERTIES

		-		
	PROPERTY	N-TEM52	TEST METHOD	UNIT
	Color	Dark Gray	Visual	-
-	Surface tack 2-side/1-side	2	-	-
-	Thickness	Customized	ASTM D374	mm
	Density	4.4	ASTM D792	g/cm³
-	Hardness	60	ASTM D2240	Shore OO
-	TML	<0.8	By LiPOLY	%
-	Application temperature	-60~130	-	°C
-	ROHS & REACH	Compliant	-	-
	COMPRESSION@1.0mm			
	Deflection @10 psi	6	ASTM D5470 modify	%
-	Deflection @20 psi	8	ASTM D5470 modify	%
-	Deflection @30 psi	10	ASTM D5470 modify	%
-	Deflection @40 psi	11	ASTM D5470 modify	%
-	Deflection @50 psi	12	ASTM D5470 modify	%
k	EMI Attenuation @1.0mm			
	EMI attenuation@ 2.4 GHz	26	ASTM D4935 modify	dB/cm
-	EMI attenuation@ 3.5 GHz	30	ASTM D4935 modify	dB/cm
, -	EMI attenuation@ 5.0 GHz	49	ASTM D4935 modify	dB/cm
-	EMI attenuation@ 6.0 GHz	50	ASTM D4935 modify	dB/cm
-	EMI attenuation@ 12 GHz	96	ASTM D4935 modify	dB/cm
-	EMI attenuation@ 18 GHz	116	ASTM D4935 modify	dB/cm
-	EMI attenuation@ 28 GHz	135	ASTM D4935 modify	dB/cm
-	EMI attenuation@ 39 GHz	113	ASTM D4935 modify	dB/cm
	ELECTRICAL			
	Surface resistivity	>1011	ASTM D257	Ohm
-	Volume resistivity	>1010	ASTM D257	Ohm-m
	THERMAL			
	Thermal Conductivity	2.0	ASTM D5470	W/m*K
-	Thermal impedance@10 psi	0.823	ASTM D5470	°C-in²/ W
-	Thermal impedance@20 psi	0.794	ASTM D5470	°C-in²/ W
-	Thermal impedance@30 psi	0.771	ASTM D5470	°C-in²/ W
-	Thermal impedance@40 psi	0.756	ASTM D5470	°C-in²/ W
-	Thermal impedance@50 psi	0.737	ASTM D5470	°C-in²/ W
-			_	

Attenuation

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the performance of the product naver's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All ripots reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

N-TEM53

Non-Silicone Thermal Conductive RF Absorber Pad

LiPOLY N-TEM53 is a thermally conductive absorber based upon soft magnetic materials dispersed in a non-silicone resin. It has a thermal conductivity of 3.0 W/m*K and dissipates electromagnetic radia- tion rapidly to mitigate against EMI issues.

FEATURES

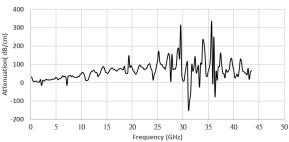
- / Thermal conductivity: 3.0 W/m*K
- / Excellent absorption characteristics
- / Naturally tacky
- / Reworkable

TYPICAL APPLICATION

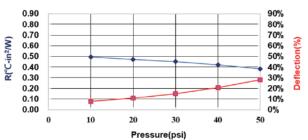
- / IC, CPU, MOS, LED, M/B, Heat sinl
- / LCD-TV, Notebook PC, PC, Telecom device, Wireless hub
- / DDR II module, DVD applications, Hand-set applications
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS

- / Sheet form
- / Die-cut parts


FREQUENCY APPLICATION

2.4 GHz Wi-Fi Router , Bluetooth
3.5 GHz 5G Mobile Networks
5.0 GHz Wi-Fi Router
6.0 GHz Wi-Fi Router
12~18 GHz Low Earth Orbit (LEO) System
28 GHz 5G Mobile Networks
39 GHz 5G Mobile Networks


TYPICAL PROPERTIES

	PROPERTY	N-TEM53	TEST METHOD	UNIT
	Color	Dark Gray	Visual	ONIT
-	Surface tack 2-side/1-side	2	VISUAI	-
-	Thickness	2 Customized	ASTM D374	mm
-	Density	3.9	ASTM D374	g/cm ³
-	Hardness	75	ASTM D792	Shore OO
-	TML	<0.8	By LiPOLY	%
-	Application temperature	-60~130	By LII OL I	°C
	ROHS & REACH	Compliant	-	U
<	COMPRESSION@1.0mm	Compliant	-	-
	Deflection @10 psi	8	ASTM D5470 modify	%
-	Deflection @20 psi	11	ASTM D5470 modify	%
-	Deflection @30 psi	15	ASTM D5470 modify	%
-	Deflection @40 psi	21	ASTM D5470 modify	%
-	Deflection @50 psi	28	ASTM D5470 modify	%
nk	EMI Attenuation @1.0mm	20	A Child Do From Hodary	70
IK	EMI attenuation@ 2.4 GHz	12	ASTM D4935 modify	dB/cm
-	EMI attenuation@ 3.5 GHz	12	ASTM D4935 modify	dB/cm
s, -	EMI attenuation@ 5.0 GHz	29	ASTM D4935 modify	dB/cm
, -	EMI attenuation@ 5.0 GHz	25	ASTM D4935 modify	dB/cm
-	EMI attenuation@ 12 GHz	60	ASTM D4935 modify	dB/cm
-	EMI attenuation@ 18 GHz	71	ASTM D4935 modify	dB/cm
-	EMI attenuation@ 18 GHz	112		dB/cm
-	<u>v</u>		ASTM D4935 modify	-
	EMI attenuation@ 39 GHz	68	ASTM D4935 modify	dB/cm
	ELECTRICAL Surface resistivity	>1011	ASTM D257	Ohm
-	•	>10	ASTM D257	•
1	Volume resistivity THERMAL	~10.4	AS TWI DZOI	Ohm-m
		2.0		10//100 *1/
-	Thermal Conductivity	3.0	ASTM D5470	W/m*K
-	Thermal impedance@10 psi	0.496	ASTM D5470	°C-in²/W
-	Thermal impedance@20 psi	0.473	ASTM D5470	°C-in²/W
-	Thermal impedance@30 psi	0.452	ASTM D5470	°C-in²/W
-	Thermal impedance@40 psi	0.423	ASTM D5470	°C-in²/W
-	Thermal impedance@50 psi	0.385	ASTM D5470	°C-in²/W
				_

Attenuation

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the start werfy the safety before using the material. We strongly recommend the purchaser pretest the product and verify the performance of the product there's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

N-TEM54

Non-Silicone Thermal Conductive RF Absorber Pad

LiPOLY N-TEM54 is a thermally conductive absorber based upon soft magnetic materials dispersed in a non-silicone resin. It has a thermal conductivity of 4.0 W/m*K and dissipates electromagnetic radia- tion rapidly to mitigate against EMI issues.

FEATURES

- / Thermal conductivity: 4.0 W/m*K
- / Excellent absorption characteristics
- / Naturally tacky
- / Reworkable

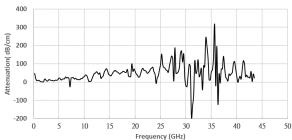
TYPICAL APPLICATION

- / IC, CPU, MOS, LED, M/B, Heat sink
- / LCD-TV, Notebook PC, PC, Telecom device, Wireless hub
- / DDR II module, DVD applications, Hand-set applications
- / 5G base station & infrastructure
- / EV electric vehicle

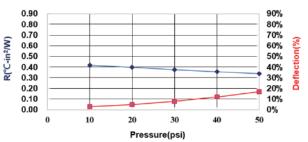
SPECIFICATIONS

- / Sheet form
- / Die-cut parts

75


FREQUENCY APPLICATION

2.4 GHz Wi-Fi Router , Bluetooth
3.5 GHz 5G Mobile Networks
5.0 GHz Wi-Fi Router
6.0 GHz Wi-Fi Router
12~18 GHz Low Earth Orbit (LEO) System
28 GHz 5G Mobile Networks
39 GHz 5G Mobile Networks


TYPICAL PROPERTIES

	PROPERTY	N-TEM54	TEST METHOD	UNIT			
_	Color	Dark Gray	Visual	-			
_	Surface tack 2-side/1-side	2	-	-			
_	Thickness	Customized	ASTM D374	mm			
_	Density	3.6	ASTM D792	g/cm³			
_	Hardness	75	ASTM D2240	Shore OO			
_	TML	<0.8	By LiPOLY	%			
-	Application temperature	-60~130	-	°C			
	ROHS & REACH	Compliant	-	-			
	COMPRESSION@1.0mm	COMPRESSION@1.0mm					
	Deflection @10 psi	3	ASTM D5470 modify	%			
-	Deflection @20 psi	5	ASTM D5470 modify	%			
-	Deflection @30 psi	8	ASTM D5470 modify	%			
-	Deflection @40 psi	12	ASTM D5470 modify	%			
-	Deflection @50 psi	17	ASTM D5470 modify	%			
k	EMI Attenuation @1.0mm						
	EMI attenuation@ 2.4 GHz	12	ASTM D4935 modify	dB/cm			
	EMI attenuation@ 3.5 GHz	9	ASTM D4935 modify	dB/cm			
-	EMI attenuation@ 5.0 GHz	22	ASTM D4935 modify	dB/cm			
-	EMI attenuation@ 6.0 GHz	18	ASTM D4935 modify	dB/cm			
-	EMI attenuation@ 12 GHz	47	ASTM D4935 modify	dB/cm			
-	EMI attenuation@ 18 GHz	53	ASTM D4935 modify	dB/cm			
-	EMI attenuation@ 28 GHz	118	ASTM D4935 modify	dB/cm			
-	EMI attenuation@ 39 GHz	49	ASTM D4935 modify	dB/cm			
	ELECTRICAL			1			
	Surface resistivity	>1011	ASTM D257	Ohm			
-	Volume resistivity	>1010	ASTM D257	Ohm-m			
	THERMAL						
	Thermal Conductivity	4.0	ASTM D5470	W/m*K			
-	Thermal impedance@10 psi	0.419	ASTM D5470	°C-in²/ W			
-	Thermal impedance@20 psi	0.399	ASTM D5470	°C-in²/ W			
-	Thermal impedance@30 psi	0.377	ASTM D5470	°C-in²/W			
-	Thermal impedance@40 psi	0.357	ASTM D5470	°C-in²/W			
-	Thermal impedance@50 psi	0.338	ASTM D5470	°C-in²/W			
-				1			

Attenuation

Thermal Resistance vs. Pressure vs. Deflection

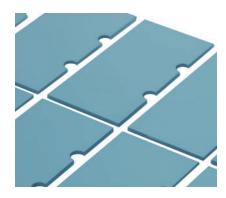
Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the performance of the product naver's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All ripots reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

DTT44-s

5G mmWave Thermal Conductive Gel Pad

LiPOLY DTT44-s is a soft thermally conductive gel pad specifically designed for networking communication applications.DTT44-s is designed to focus on D_k and D_f to reduce interference in RF modules. DTT44-s has a thermal conductivity of 3.0 W/m*K. This product can be supplied as standard sheets, custom die-cuts or custom molded parts making it suitable for a wide range of applications.

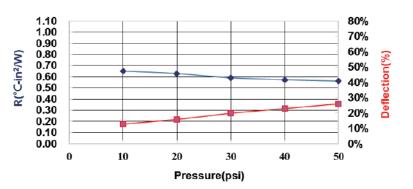
FEATURES


- / Thermal conductivity: 3.0 W/m*K
- / Hardness: Shore 00/50
- / Low dielectric constant
- / For high frequency applications
- / Available in a range of thicknesses

TYPICAL APPLICATION

- / Communications satellite
- / Satellite positioning devices
- / IoT devices
- / Telecommunication hardware
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS


/ Sheet form / Die-cut parts

TYPICAL PROPERTIES

PROPERTY	DTT44-s	TEST METHOD	UNIT
Color	Blue	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	2.2	ASTM D792	g/cm³
Hardness	50	ASTM D2240	Shore OO
Water absorption	0.02	ASTM D570	%
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	13	ASTM D5470 modify	%
Deflection @20 psi	16	ASTM D5470 modify	%
Deflection @30 psi	20	ASTM D5470 modify	%
Deflection @40 psi	23	ASTM D5470 modify	%
Deflection @50 psi	26	ASTM D5470 modify	%
ELECTRICAL	'	'	
Dielectric breakdown	11	ASTM D149	KV/mm
Surface resistivity	>1010	ASTM D257	Ohm
Volume resistivity	>1010	ASTM D257	Ohm-m
Dielectric constant@2GHz Dk	4.115	ASTM D150	-
Dielectric constant@6GHz Dk	4.214	ASTM D150	-
Dielectric constant@10GHz Dk	3.983	ASTM D150	-
Dielectric loss@2GHz Df	0.00486	ASTM D150	-
Dielectric loss@6GHz Df	0.00704	ASTM D150	-
Dielectric loss@10GHz Dr	0.00940	ASTM D150	-
THERMAL	'	'	
Thermal conductivity	3.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.652	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.630	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.591	ASTM D5470	°C-in²/ W
Thermal impedance@40 psi	0.574	ASTM D5470	°C-in²/ W
Thermal impedance@50 psi	0.562	ASTM D5470	°C-in²/ W

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The product are the responsibility of the end verify the performance of the product tare the product and verify the performance of the product new rest. Builty required for the purchaser is specific conditions. Liability, and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LIPOLY products are sold in accordance with the LIPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LIPOLY trademarks or registered trademarks of LIPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LIPOLY.

DTT65-s

5G mmWave Thermal Conductive Gel Pad

LiPOLY DTT65-s is a soft thermally conductive gel pad specifically designed for networking communication applications.DTT65-s is designed to focus on D_k and D_f to reduce interference in RF modules. DTT65-s has a thermal conductivity of 5.0 W/m*K. This product can be supplied as standard sheets, custom die-cuts or custom molded parts making it suitable for a wide range of applications.

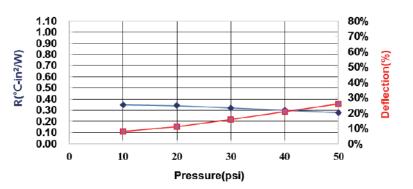
FEATURES

- / Thermal conductivity: 5.0 W/m*K
- / Hardness: Shore 00/55
- / Low dielectric constant
- / For high frequency applications
- / Available in a range of thicknesses

TYPICAL APPLICATION

- / Communications satellite
- / Satellite positioning devices
- / IoT devices
- / Telecommunication hardware
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS


/ Sheet form / Die-cut parts

TYPICAL PROPERTIES

PROPERTY	DTT65-s	TEST METHOD	UNIT
Color	Red	Visual	-
Surface tack 2-side/1-side	2	-	-
Thickness	Customized	ASTM D374	mm
Density	2.1	ASTM D792	g/cm³
Hardness	55	ASTM D2240	Shore OO
Water absorption	0.005	ASTM D570	%
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	8	ASTM D5470 modify	%
Deflection @20 psi	11	ASTM D5470 modify	%
Deflection @30 psi	16	ASTM D5470 modify	%
Deflection @40 psi	21	ASTM D5470 modify	%
Deflection @50 psi	26	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	10	ASTM D149	KV/mm
Surface resistivity	>1012	ASTM D257	Ohm
Volume resistivity	>10 ¹³	ASTM D257	Ohm-m
Dielectric constant@2GHz Dk	4.131	ASTM D150	-
Dielectric constant@6GHz Dk	4.058	ASTM D150	-
Dielectric constant@10GHz Dk	4.013	ASTM D150	-
Dielectric loss@2GHz Df	0.00509	ASTM D150	-
Dielectric loss@6GHz Df	0.00658	ASTM D150	-
Dielectric loss@10GHz Df	0.00780	ASTM D150	-
THERMAL			
Thermal conductivity	5.0	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.350	ASTM D5470	°C-in²/W
Thermal impedance@20 psi	0.342	ASTM D5470	°C-in²/W
Thermal impedance@30 psi	0.323	ASTM D5470	°C-in²/W
Thermal impedance@40 psi	0.302	ASTM D5470	°C-in²/W
Thermal impedance@50 psi	0.281	ASTM D5470	°C-in²/W

Thermal Resistance vs. Pressure vs. Deflection

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guarantee. This document does not guarantee the performance and quality required for the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

ST6000-S

UL Flammability Thermal Conductive Tape

LiPOLY ST6000-S is a thermally conductive tape with UL high temperature heat resistance. The thermal conductivity is 1.8 W/m*K. The stickiness and strength of the thermal tape will increase when temperatures and pressure rise. They are designed to securely bond heat sinks to power dissipating components without an additional clamping mechanism.)

FEATURES

TYPICAL APPLICATION

- / Thermal conductivity:1.8 W/m*K / High temperature stability
- / Easy to assemble

- / Power supplies
 / Motor controls
 / Power semiconductors
 / 5G base station & infrastructure
 / EV electric vehicle
- SPECIFICATIONS

/ Sheet form/ Die-cut parts

TYPICAL PROPERTIES

PROPERTY	ST6000-S	TEST METHOD	UNIT
Color	White	Visual	-
Reinforced layer	None	-	-
Thickness	0.2	ASTM D374	mm
Density	2.3	ASTM D792	g/cm³
Application temperature	-60~180	-	°C
Short time temp. @30sec	288	-	°C
ROHS	Compliant	-	-
ADHESION			
Lap shear strength	35	ASTM D1002	N/cm ²
Die shear strength@25°C	50	-	N/cm ²
Die shear strength@80°C	50	<u>-</u>	N/cm ²
Holding power 1kg @25°C	>10000	PSTC-7	min
Holding power 1kg @80°C	>10000	PSTC-7	min
90° Peeling strength @ 25°C, 72 hrs	>8	ASTM D3330	N/inch
90° Peeling strength @ Thermal aging	>7	80°C 1000 hrs	N/inch
90° Peeling strength @ HAST	>10	85°C/85%RH 1000 hrs	N/inch
90° Peeling strength @ Thermal cycling	>9.5	-40°C~120°C 500 cycles	N/inch
ELECTRICAL			
Dielectric breakdown	3.5	ASTM D149	KV
Surface resistivity	>10°	ASTM D257	Ohm
Volume resistivity	>10°	ASTM D257	Ohm-m
THERMAL	1		1
Thermal conductivity	1.8	ASTM D5470	W/m*K
Thermal impedance@5psi	0.81	ASTM D5470	°C-in²/ V
Thermal impedance@10psi	0.72	ASTM D5470	°C-in²/ V
Thermal impedance@15psi	0.65	ASTM D5470	°C-in²/ V

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific or valuate and verify the safety before using the material. We strongly recommend the purchaser pretest the product and verify the performance of the product and verify the safety before used. The JUPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY trans and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY transmas or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

AT910

SPECIFICATIONS

/ Sheet form

/ Die-cut parts

UL Flammability Thermal Conductive Tape

LiPOLY AT910 is a fiberglass reinforced thermally conductive tape with UL high temperature heat resistance. The thermal conductivity is 1.0 W/m*K. The stickiness and strength of the thermal tape will increase when temperatures and pressure rise. They are designed to securely bond heat sinks to power dissipating components without an additional clamping mechanism.

FEATURES

79

- / Thermal conductivity:1.0 W/m*K
- / Excellent adhesive properties
- / Designed for manufacture
- / Excellent long term reliability
- / Fiberglass reinforced layer

TYPICAL APPLICATION

- / Automotive electronics
- / Telecommunications
- / LED light bar & LED lamp
- / Between any heat-generating component and heat sink
- / 5G base station & infrastructure
- / EV electric vehicle

TYPICAL PROPERTIES

PROPERTY	AT910		TEST METHOD	UNIT
Color	W	hite	Visual	-
Reinforced layer	Fibe	rglass	-	-
Thickness	0.15	0.25	ASTM D374	mm
Density	1.8	1.8	ASTM D792	g/cm³
Application temperature	-60~120	-60~120	-	°C
Short time temp. @30sec	200	200	-	°C
ROHS	Compliant	Compliant	-	-
ADHESION				
Initial tack	11	8	PSTC-6	cm
Lap shear strength	50	50	ASTM D1002	N/cm ²
Die shear strength@25°C	100	100	-	N/cm ²
Die shear strength@80°C	70	70	-	N/cm ²
Holding power 1kg @25°C	>10000	>10000	PSTC-7	min
Holding power 1kg @80°C	>10000	>10000	PSTC-7	min
90° Peeling strength @ 25°C, 72 hrs	>5	>6	ASTM D3330	N/inch
90° Peeling strength @ Thermal aging	>14	>20	80°C 1000 hrs	N/inch
90° Peeling strength @ HAST	>20	>24	85°C/85%RH 1000 hrs	N/inch
90° Peeling strength @ Thermal cycling	>27	>28	-40°C~120°C 500 cycles	N/inch
ELECTRICAL		1	1	1
Dielectric breakdown	2	3	ASTM D149	KV
Surface resistivity	>1011	>1011	ASTM D257	Ohm
Volume resistivity	>1011	>1011	ASTM D257	Ohm-m
THERMAL			·	
Thermal conductivity	1.0	1.0	ASTM D5470	W/m*K
Thermal impedance@5psi	0.81	1.38	ASTM D5470	°C-in²/ W
Thermal impedance@10psi	0.78	1.30	ASTM D5470	°C-in²/ W
Thermal impedance@15psi	0.76	1.25	ASTM D5470	°C-in²/ W

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guarantee. This document does not guarantee the performance and quality required for the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

AT900A

Insulated Thermal Conductive Tape

LiPOLY AT900A is a thermally conductive tape. With a fiberglass reinforced layer and a thermal conductivity of 0.9 W/m*K this product is designed for applications where additional durability is needed. AT900A can be provided in either standard sheets or custom-die cuts.

FEATURES

- / Thermal conductivity:0.9 W/m*K
- / Excellent adhesive properties
- / Designed for manufacture
- / Excellent long term reliability
- / Fiberglass reinforced layer

TYPICAL PROPERTIES

TYPICAL APPLICATION

- / Automotive electronics
- / Telecommunications
- / LED light bar & LED lamp
- / Between any heat-generating
- component and heat sink
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS

/ Sheet form / Die-cut parts

PROPERTY	AT900A		TEST METHOD	UNIT
Color	Wi	nite	Visual	-
Reinforced layer	Fiber	glass	-	-
Thickness	0.15	0.25	ASTM D374	mm
Density	1.6	1.6	ASTM D792	g/cm³
Application temperature	-60~120	-60~120	-	°C
Short time temp. @30sec	200	200	-	°C
ROHS	Compliant	Compliant	-	-
ADHESION				
Initial tack	10	8	PSTC-6	cm
Lap shear strength	60	60	ASTM D1002	N/cm ²
Die shear strength@25°C	107	94	-	N/cm ²
Die shear strength@80°C	70	70	-	N/cm ²
Holding power 1kg @25°C	>10000	>10000	PSTC-7	min
Holding power 1kg @80°C	>10000	>10000	PSTC-7	min
90° Peeling strength @ 25°C, 72 hrs	>10	>12	ASTM D3330	N/inch
90° Peeling strength @ Thermal aging	>14	>20	80°C 1000 hrs	N/inch
90° Peeling strength @ HAST	>20	>25	85°C/85%RH 1000 hrs	N/inch
90° Peeling strength @ Thermal cycling	>15	>20	-40°C~120°C 500 cycles	N/inch
ELECTRICAL				
Dielectric breakdown	2	3	ASTM D149	KV
Surface resistivity	>1010	>1010	ASTM D257	Ohm
Volume resistivity	>1010	>1010	ASTM D257	Ohm-m
THERMAL				
Thermal conductivity	0.9	0.9	ASTM D5470	W/m*K
Thermal impedance@5psi	0.87	1.15	ASTM D5470	°C-in²/ W
Thermal impedance@10psi	0.85	1.14	ASTM D5470	°C-in²/ W
Thermal impedance@15psi	0.82	1.12	ASTM D5470	°C-in²/ W

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The protest methods are used as the definition standards for LiPOLY. Safety before using the material. We strongly recommend the purchaser pretest the product and verify the performance of the product therefore the product and verify the product and verify the performance of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LIPOLY products are sold in accordance with the LIPOLY Terms and Conditions in effect at the time of purchases and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LIPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LIPOLY.

AT900C

Insulated Thermal Conductive Tape

LiPOLY AT900C is a thermally conductive tape. With a fiberglass reinforced layer and a thermal conductivity of 1.2 W/m*K this product is designed for applications where additional durability is needed. AT900C can be provided in either standard sheets or custom-die cuts.

FEATURES

- / Thermal conductivity:1.2 W/m*K
- / Excellent adhesive properties
- / Designed for manufacture
- / Excellent long term reliability
- / Fiberglass reinforced layer

TYPICAL PROPERTIES

TYPICAL APPLICATION

- / Automotive electronics
- / Telecommunications
- / LED light bar & LED lamp
- / Between any heat-generating
- component and heat sink
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS

/ Sheet form / Die-cut parts

PROPERTY	ATS	900C	TEST METHOD	UNIT
Color	White		Visual	-
Reinforced layer	Fibe	rglass	-	-
Thickness	0.15	0.25	ASTM D374	mm
Density	1.7	1.7	ASTM D792	g/cm³
Application temperature	-60~120	-60~120	-	°C
Short time temp. @30sec	200	200	-	°C
ROHS	Compliant	Compliant	-	-
ADHESION	1			
Initial tack	14	12	PSTC-6	cm
Lap shear strength	55	60	ASTM D1002	N/cm ²
Die shear strength@25°C	100	100	-	N/cm ²
Die shear strength@80°C	65	65	-	N/cm ²
Holding power 1kg @25°C	>10000	>10000	PSTC-7	min
Holding power 1kg @80°C	>10000	>10000	PSTC-7	min
90° Peeling strength @ 25°C, 72 hrs	>6	>8	ASTM D3330	N/inch
90° Peeling strength @ Thermal aging	>10	>15	80°C 1000 hrs	N/inch
90° Peeling strength @ HAST	>18	>22	85°C/85%RH 1000 hrs	N/inch
90° Peeling strength @ Thermal cycling	>13	>19	-40°C~120°C 500 cycles	N/inch
ELECTRICAL	1	1	I	1
Dielectric breakdown	3	4	ASTM D149	KV
Surface resistivity	>1011	>1011	ASTM D257	Ohm
Volume resistivity	>1011	>1011	ASTM D257	Ohm-m
THERMAL	1			
Thermal conductivity	1.2	1.2	ASTM D5470	W/m*K
Thermal impedance@5psi	0.72	0.98	ASTM D5470	°C-in²/ W
Thermal impedance@10psi	0.68	0.94	ASTM D5470	°C-in²/ W
Thermal impedance@15psi	0.66	0.92	ASTM D5470	°C-in²/ W

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY Note: All specifications provided by LIPOLY are subject to change without notice. The test memory used by LIPOLY are based on the IIM Tester method and ASI M US4/U test method. These test methods are used as the definition standards to LIPOLY property values provided in this document are not for product specifications or guarantee. This document does not guarantee the performance and quality required for the purchaser's specific property. The purchaser's specific programs. The purchaser needs to evaluate and verify the safety before using the material. We strongly recommend the purchaser pre-test the product and verify the performance of the product specifications. Liability and use of the product are the responsibility of the end user. LIPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LIPOLY material or product for any specific or general uses. LIPOLY shall not be liable for incidental orconsequential damages of any kind. All LIPOLY products are sold in accordance with the LIPOLY Terms and Conditions in effect at the time of purchases and a copy of which will be furnished upon request. All rights reserved, including LIPOLY trademarks or registered trademarks of LIPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LIPOLY.

81

AT920-s

High Thermal Conductive Tape

LiPOLY AT920-s is an unsupported thermally conductive tape with a thermal conductivity of 3.5 W/m*K. The thickness comes in 0.25 and 0.50 mm, and the AT920-s can withstand 4~7K voltage. Using highly thermal conductive particles makes the tape extremely reliable and easy to use. The stickiness and strength will increase when temperature and pressure rise.

FEATURES

- / Thermal conductivity:3.5 W/m*K
- / Excellent adhesive properties
- / Designed for manufacture
- / Excellent long term reliability

TYPICAL APPLICATION

- / Automotive electronics
- / Telecommunications
- / LED light bar & LED lamp
- / Between any heat-generating
 - component and heat sink
 - / 5G base station & infrastructure
- / EV electric vehicle

TYPICAL PROPERTIES

PROPERTY	AT920-s		TEST METHOD	UNIT
Color	W	hite	Visual	-
Reinforced layer	No	one	-	-
Thickness	0.25	0.50	ASTM D374	mm
Density	2.6	2.6	ASTM D792	g/cm³
Application temperature	-60~120	-60~120	-	°C
Short time temp. @30sec	200	200	-	°C
ROHS	Compliant	Compliant	-	-
ADHESION				
Initial tack	12	8	PSTC-6	cm
Lap shear strength	30	35	ASTM D1002	N/cm ²
Die shear strength@25°C	80	85	-	N/cm ²
Die shear strength@80°C	40	40	-	N/cm ²
Holding power 1kg @25°C	>10000	>10000	PSTC-7	min
Holding power 1kg @80°C	>10000	>10000	PSTC-7	min
90° Peeling strength @ 25°C, 72 hrs	>7	>9	ASTM D3330	N/inch
90° Peeling strength @ Thermal aging	>12	>13	80°C 1000 hrs	N/inch
90° Peeling strength @ HAST	>20	>22	85°C/85%RH 1000 hrs	N/inch
90° Peeling strength @ Thermal cycling	>11	>13	-40°C~120°C 500 cycles	N/inch
ELECTRICAL	J	1	1	1
Dielectric breakdown	4	7	ASTM D149	KV
Surface resistivity	>1011	>1011	ASTM D257	Ohm
Volume resistivity	>1012	>1012	ASTM D257	Ohm-m
THERMAL				
Thermal conductivity	3.5	3.5	ASTM D5470	W/m*K
Thermal impedance@5psi	0.33	0.54	ASTM D5470	°C-in²/ W
Thermal impedance@10psi	0.32	0.53	ASTM D5470	°C-in²/ W
Thermal impedance@15psi	0.31	0.50	ASTM D5470	°C-in²/ W

SHIU LI TECHNOLOGY CO., LTD

SPECIFICATIONS

/ Sheet form

/ Die-cut parts

Note: All specifications provided by LIPOLY are subject to change without notice. The test methods used by LIPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LIPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the pruchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LIPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LIPOLY material or product for any specific or general uses. LIPOLY shall not be liable for incidental orconsequential damages of any kind. All LIPOLY products are sold in accordance with the LIPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LIPOLY trademarks or registered trademarks of LIPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LIPOLY.

PR27

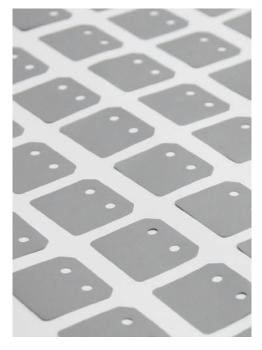
High Insulated Thermal Conductive Film

LiPOLY PR27 is a very thin, high insulator with a thickness of 0.15mm. It uses Polyimide Film as the reinforcement material, which can increase the tensile strength. It's suitable for high power transistors, electrical equipment, and will be the best choice for auto-distribution systems.

FEATURES

- / Thermal conductivity:1.8 W/m*K / Good insulator / Low thermal impedance / Reworkable
- / High performance

TYPICAL APPLICATION


- / Power supplies
- / Motor controls
- / Power semiconductors
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS

/ Sheet form

83

- / Die-cut parts
- / Single-sided adhesive or double-sided adhesive can be used as required

TYPICAL PROPERTIES

PROPERTY	PR27	TEST METHOD	UNIT
Color	Gray	Visual	-
Surface tack 2-side/1-side	0	-	-
Reinforced layer	Polyimide	-	-
Thickness	0.10 / 0.125 / 0.15	ASTM D374	mm
Density	1.5	ASTM D792	g/cm³
Hardness	80	ASTM D2240	Shore A
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
ELECTRICAL			
Dielectric breakdown	12	ASTM D149	KV
Surface resistivity	>1013	ASTM D257	Ohm
Volume resistivity	>1012	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	1.8	ASTM D5470	W/m*K
Thermal impedance@20psi	0.441	ASTM D5470	°C-in²/ W
Thermal impedance@60psi	0.360	ASTM D5470	°C-in²/ W
Thermal impedance@100psi	0.329	ASTM D5470	°C-in²/ W

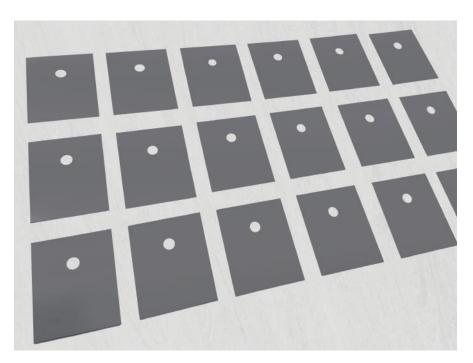
Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the safety before using the material. We strongly recommend the purchaser pretest the product and verify the performance of the product targets' specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be (minished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

High Insulated Thermal Conductive Film

LiPOLY PR28-s is a very thin, high insulator with a thickness of 0.15mm. It uses Polyimide Film as the reinforcement material, which can increase the tensile strength. It's suitable for high power transistors, electrical equipment, and will be the best choice for auto-distribution systems.

FEATURES

- / Thermal conductivity:2.5 W/m*K / Good insulator
- / Low thermal impedance
- / Reworkable
- / High performance


TYPICAL APPLICATION

- / Power supplies
- / Motor controls
- / Power semiconductors
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS

- / Sheet form
- / Die-cut parts
- / Single-sided adhesive or double-sided adhesive can be used as required

TYPICAL PROPERTIES

PROPERTY	PR28-s	TEST METHOD	UNIT
Color	Gray	Visual	-
Surface tack 2-side/1-side	0	-	-
Reinforced layer	Polyimide	-	-
Thickness	0.10 / 0.125 / 0.15	ASTM D374	mm
Density	1.5	ASTM D792	g/cm³
Hardness	80	ASTM D2240	Shore A
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
ELECTRICAL			
Dielectric breakdown	8	ASTM D149	KV
Surface resistivity	>1013	ASTM D257	Ohm
Volume resistivity	>1012	ASTM D257	Ohm-m
THERMAL			
Thermal conductivity	2.5	ASTM D5470	W/m*K
Thermal impedance@20psi	0.342	ASTM D5470	°C-in²/ W
Thermal impedance@60psi	0.269	ASTM D5470	°C-in²/ W
Thermal impedance@100psi	0.235	ASTM D5470	°C-in²/ W

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The protest methods are used as the definition standards for LiPOLY. Safety before using the material. We strongly recommend the purchaser pretest the product and verify the performance of the product therefore the product and verify the product and verify the performance of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LIPOLY products are sold in accordance with the LIPOLY Terms and Conditions in effect at the time of purchases and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LIPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LIPOLY.

SH1500/2000/3000

High Insulated Thermal Conductive Pad Series

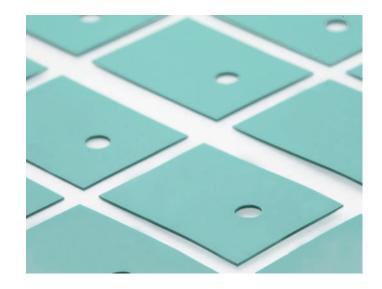
LiPOLY SH1500/2000/3000 is a thermal insulator uses fiberglass cloth as a reinforcement material, combined with thermal conductive silicon, giving it high thermal conduction and great compression strength. The thermal conductivity is 1.5/2.0/3.0 W/m*K, the thickness is 0.25~0.45mm. Its high insulation and fiberglass materials increase the strength of its structure making it cut resistant. SH1500/2000/3000 is the best choice for high torque screw setting. It functions well with electrical isolative of high power electronic component and the heat sink.

FEATURES

- / Thermal conductivity:1.5/2.0/3.0 W/m*K
- / Excellent insulator
- / Reworkable
- / Fiberglass reinforced

TYPICAL APPLICATION

- / Power supplies
- / Motor controls
- / EV electric vehicle
- / Automotive electronics
- / 5G base station & infrastructure


SPECIFICATIONS

- / Sheet form
- / Die-cut parts

TYPICAL PROPERTIES

PROPERTY	SH1500	SH2000	SH3000	TEST METHOD	UNIT
Color	Yellow	Green	Pink	Visual	-
Reinforced layer	Fiberglass	Fiberglass	Fiberglass	-	-
Thickness	0.23	0.30	0.35	ASTM D374	mm
Density	2.3	2.6	2.8	ASTM D792	g/cm³
Hardness	80	80	80	ASTM D2240	Shore A
Application temperature	-60~180	-60~180	-60~180	-	°C
ROHS	Compliant	Compliant	Compliant	-	-
ELECTRICAL					
Dielectric breakdown	4	5	5.5	ASTM D149	KV
Surface resistivity	>1012	>1012	>1012	ASTM D257	Ohm
Volume resistivity	>1012	>1012	>1010	ASTM D257	Ohm-m
THERMAL					
Thermal conductivity	1.5	2.0	3.0	ASTM D5470	W/m*K
Thermal impedance@20 psi	0.634	0.533	0.574	ASTM D5470	°C-in²/ W
Thermal impedance@60 psi	0.451	0.386	0.393	ASTM D5470	°C-in²/ W
Thermal impedance@100 psi	0.410	0.362	0.361	ASTM D5470	°C-in²/ W

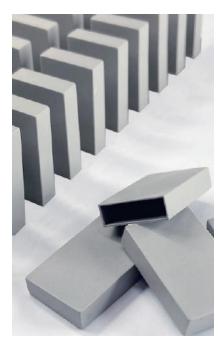
Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific orditons. Liability and use of the purchaser needs on valuet and verify the partomance and quality required for the purchaser's specific conditions. Liability, and use of the product are the products are the product are the products are used as to the and user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPDUY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

SP22/23/33

Thermal Conductive Rubber Cap Series

LiPOLY SP is a stereoscopic thermal conductive silicone rubber cap as substrate through a special production process. Due to its excellent characteristic of high thermal conductivity, insulation, shockproof and convenient assembly, it is widely used in heat transistor refer to TO220 / TO3P, diode, triode.

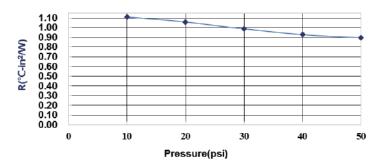
FEATURES


- / Thermal conductivity: 0.8 W/m*K
- / Good insulator
- / High recovery
- / Easy to assemble
- / Available in a range of thicknesses

TYPICAL APPLICATION

- / Between CPU and heat sink
- / Between a component and heat sink
- / Notebook computers
- / Power supplies
- / High speed mass storage drives
- / Telecommunication hardware
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS


/ SP22-11.4 x 16x5.8mm / SP23-11.4 x 21.5x5.8mm / SP33-17.5 x 28.5x5.8mm

TYPICAL PROPERTIES

PROPERTY	SP22/23/33	TEST METHOD	UNIT
Color	Gray	Visual	-
Resin base	Silicone	-	-
Thickness	0.3 / 0.45	ASTM D374	mm
Density	1.8	ASTM D792	g/cm³
Hardness	55	ASTM D2240	Shore A
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	1	ASTM D5470 modify	%
Deflection @20 psi	2	ASTM D5470 modify	%
Deflection @30 psi	3	ASTM D5470 modify	%
Deflection @40 psi	4	ASTM D5470 modify	%
Deflection @50 psi	5	ASTM D5470 modify	%
ELECTRICAL			
Dielectric breakdown	7/8	ASTM D149	KV/mm
Surface resistivity	>1012	ASTM D257	Ohm
Volume resistivity	>1013	ASTM D257	Ohm-m
THERMAL@0.3mm			
Thermal conductivity	0.8	ASTM D5470	W/m*K
Thermal impedance@10 psi	1.110	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	1.058	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.988	ASTM D5470	°C-in²/ W
Thermal impedance@40 psi	0.929	ASTM D5470	°C-in²/ W
Thermal impedance@50 psi	0.897	ASTM D5470	°C-in²/ W

Thermal Resistance vs. Pressure

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The protest methods are used as the definition standards for LiPOLY. Safety before using the material. We strongly recommend the purchaser pretest the product and verify the performance of the product therefore the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LIPOLY products are sold in accordance with the LIPOLY Terms and Conditions in effect at the time of purchases and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LIPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LIPOLY.

CP-S

Thermal Conductive Rubber Cap

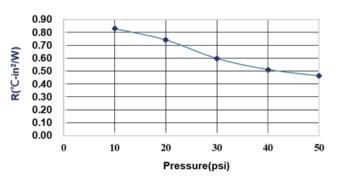
LiPOLY CP-S is a stereoscopic thermal conductive silicone rubber cap as substrate through a special production process. Due to its excellent characteristic of high thermal conductivity, insulation, shock-proof and convenient assembly, it is widely used in heat transistor refer to TO220 / TO3P, diode, triode.

FEATURES

- / Thermal conductivity: 2.5 W/m*K
 / Good insulator
 / High recovery
 / Easy to assemble
 / Available in a range of thicknesses
 TYPICAL APPLICATION
 / Between CPU and heat sink
 / Between a component and heat sink
 / Notebook computers
 / Power supplies
 / High speed mass storage drives
 / Telecommunication hardware
 PROPERTY Color
 Resin base Thickness
 Density
 Hardness
 Application
 ROHS & RE
 Deflection @
 Deflection @
 Deflection @
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS

/ 11.4 x 16x5.8mm / 11.4 x 21.5x5.8mm / 17.5 x 28.5x5.8mm



87

TYPICAL PROPERTIES

PROPERTY	CP-S	TEST METHOD	UNIT
Color	Gray	Visual	-
Resin base	Silicone	-	-
Thickness	0.30 / 0.45	ASTM D374	mm
Density	2.3	ASTM D792	g/cm³
Hardness	65	ASTM D2240	Shore A
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	1	ASTM D5470 modify	%
Deflection @20 psi	2	ASTM D5470 modify	%
Deflection @30 psi	4	ASTM D5470 modify	%
Deflection @40 psi	5	ASTM D5470 modify %	
Deflection @50 psi	6	ASTM D5470 modify %	
ELECTRICAL			
Dielectric breakdown	7 / 8	ASTM D149	KV/mm
Surface resistivity	>1012	ASTM D257	Ohm
Volume resistivity	>1013	ASTM D257	Ohm-m
THERMAL			
Thermal Conductivity	2.5	ASTM D5470	W/m*K
Thermal impedance@10 psi	0.830	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	0.741	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.597	ASTM D5470	°C-in²/ W
Thermal impedance@40 psi	0.511	ASTM D5470	°C-in²/ W
Thermal impedance@50 psi	0.462	ASTM D5470	°C-in²/ W

Thermal Resistance vs. Pressure

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The purchaser needs to evaluate and verify the performance of the product naver's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All ripots reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

TP200

Thermal Conductive Rubber Tube

LiPOLY TP200 is a stereoscopic thermal conductive silicone rubber cap as substrate through a special production process. Due to its excellent characteristic of high thermal conductivity, insulation, shockproof and convenient assembly, it is widely used in heat transistor refer to T0220 / T03P, diode, triode.

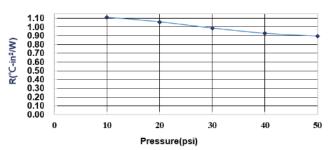
FEATURES

- / Thermal conductivity: 0.8 W/m*K
- / Good insulator
- / High recovery
- / Easy to assemble
- / Available in a range of thicknesses

TYPICAL APPLICATION

- / Between CPU and heat sink
- / Between a component and heat sink
- / Notebook computers
- / Power supplies
- / High speed mass storage drives
- / Telecommunication hardware
- / 5G base station & infrastructure
- / EV electric vehicle

SPECIFICATIONS


- / Diameter/Length:11mm/25mm
- / Diameter/Length:13.5mm/25mm
- / Diameter/Length:11mm/30mm
- / Diameter/Length:13.5mm/30mm

TYPICAL PROPERTIES

PROPERTY	TP200	TEST METHOD	UNIT
Color	Gray	Visual	-
Resin base	Silicone	-	-
Thickness	0.3	ASTM D374	mm
Density	1.8	ASTM D792	g/cm³
Hardness	55	ASTM D2240	Shore A
Application temperature	-60~180	-	°C
ROHS & REACH	Compliant	-	-
COMPRESSION@1.0mm			
Deflection @10 psi	1	ASTM D5470 modify	%
Deflection @20 psi	2	ASTM D5470 modify	%
Deflection @30 psi	3	ASTM D5470 modify	%
Deflection @40 psi	4	ASTM D5470 modify	%
Deflection @50 psi	5	ASTM D5470 modify %	
ELECTRICAL			
Dielectric breakdown	7	ASTM D149	KV/mm
Surface resistivity	>1012	ASTM D257	Ohm
Volume resistivity	>1013	ASTM D257	Ohm-m
THERMAL@0.3mm			
Thermal conductivity	0.8	ASTM D5470	W/m*K
Thermal impedance@10 psi	1.110	ASTM D5470	°C-in²/ W
Thermal impedance@20 psi	1.058	ASTM D5470	°C-in²/ W
Thermal impedance@30 psi	0.988	ASTM D5470	°C-in²/ W
Thermal impedance@40 psi	0.929	ASTM D5470	°C-in²/ W
Thermal impedance@50 psi	0.897	ASTM D5470	°C-in²/W

Thermal Resistance vs. Pressure

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the purchaser's specific purpose. The protest methods are used as the definition standards for LiPOLY. Safety before using the material. We strongly recommend the purchaser pretest the product and verify the performance of the product therefore the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, mon-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LIPOLY products are sold in accordance with the LIPOLY Terms and Conditions in effect at the time of purchases and a copy of which will be furnished upon request. All rights reserved, including LiPOLY trademarks or registered trademarks of LIPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LIPOLY.

TR332CU

Complex Thermal Conductive Film

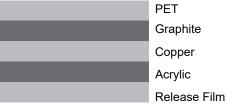
LiPOLY TR332CU is a complex thermally conductive film, composed of graphite radiator which can be laminated on copper foil to superior thermal management and ease of manufacture.TR332CU can be supplied in various manufacturing friendly formats and custom die-cut for the ultimate convenience.

FEATURES

- / Excellent heat transfer
- / Manufacturing friendly form-factor
- / Can be custom die-cut
- / Flexibly conforms to surfaces

TYPICAL APPLICATION

- / Set top box
- / Notebook Computers
- / Projector
- / Mobile phone
- / Hand held devices
- / 5G base station & infrastructure
- / EV electric vehicle


SPECIFICATIONS

- / Sheet form
- / Die-cut parts

89

TYPICAL PROPERTIES

	2	
		2
	•••	

TESTMETUOD

PROPERTY	IR332CU		TESTMETHOD	UNII
Color	Black		Visual	-
Thickness	0.10	0.15	ASTM D374	mm
TML	<0.1	<0.1	By LiPOLY	%
Application temperature	-60~120	-60~120	-	°C
Short time temp. @30sec	150	150	-	°C
ADHESION	1	'	1	
Initial tack	25	11	PSTC-6	cm
RADIATION	1	'	1	
Heat emissivity coefficient	0.96	0.96	ASTM C1371	-
ELECTRICAL	1	1	'	1
Dielectric breakdown	1	1.5	ASTM D149	KV
Surface resistivity	>1011	>1011	ASTM D257	Ohm
Volume resistivity	>1011	>1011	ASTM D257	Ohm-m
THERMAL			·	
Thermal conductivity XY axis	1500	1500	AC calorimeter	W/m*K
Thermal conductivity Z axis	1.2	1.2	Laser flash	W/m*K

TD222CU

Note: All specifications provided by LiPOLY are subject to change without notice. The test methods used by LiPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LiPOLY. Property values provided in this document are not for product specifications or guarantee. This document does not guarantee the performance and quality required for the purchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LiPOLY makes no warranty as to the suitability, merchantability, on non-infringement of any LiPOLY material or product for any specific or general uses. LiPOLY shall not be liable for incidental orconsequential damages of any kind. All LiPOLY products are sold in accordance with the LiPOLY Terms and Conditions in effect at the time of purchases and a copy of which will be furnished upon request. All inplice reserved, including LiPOLY trademarks or registered trademarks of LiPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LiPOLY.

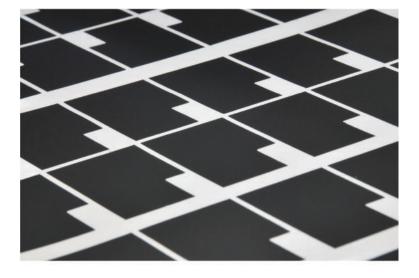
G566A/G566AP

Artificial Graphite Sheet

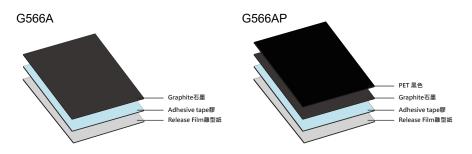
LiPOLY G566 Graphite Sheet has great thermal conductivity on the X and Y axis. The thermal conducti¬vity is 1700 W/m*K. It is flexible and bendable, which is suitable for thin products and high capability mobile devices.

FEATURES

- / Thermal conductivity: 1500~1700W/m*K
- / Good average temperature
- / Easy to assemble
- / Lightweight, Specific gravity 2.1 g/cm³


TYPICAL APPLICATION

/ Smart phones, Mobile phones
/ LED, DVD appliance
/ Hand held devices
/ 5G base station & infrastructure
/ EV electric vehicle


SPECIFICATIONS

/ Sheet form

/ Die-cut parts

PROPERTY	G566A	G566AP	TEST METHOD	UNIT
Color	Black	Black	Visual	-
Surface tack 2-side/1-side	1	1	-	-
Thickness	35	45	Micrometer	μm
Density	2.1	2.1	Archimedes law	g/cm³
Heat resistance	120	120	-	°C
Flexibility	Flexible	Flexible	-	
ROHS & REACH	Compliant	Compliant	-	-
ELECTRICAL				
Electrical conductivity	20000	20000	JIS K7194	S/cm
THERMAL	'	'	'	
Thermal conductivity XY axis	1500~1700	1500~1700	AC calorimeter	W/m*K
Thermal conductivity Z axis	5	5	Laser flash	W/m*K
Thermal diffusivity	8.92	8.92	AC calorimeter	cm²/s
Heat capacity(SHC)	0.895	0.895	-	J/g*K

Note: All specifications provided by LIPOLY are subject to change without notice. The test methods used by LIPOLY are based on the TIM Tester method and ASTM D5470 test method. These test methods are used as the definition standards for LIPOLY. Property values provided in this document are not for product specifications or guaranteed. This document does not guarantee the performance and quality required for the pruchaser's specific conditions. Liability and use of the product are the responsibility of the end user. LIPOLY makes no warranty as to the suitability, merchantability, or non-infringement of any LIPOLY material or product for any specific or general uses. LIPOLY shall not be liable for incidental orconsequential damages of any kind. All LIPOLY products are sold in accordance with the LIPOLY Terms and Conditions in effect at the time of purchase and a copy of which will be furnished upon request. All rights reserved, including LIPOLY trademarks or registered trademarks of LIPOLY or its affiliates. Statements concerning possible or suggested uses made herein shall not be relied upon or be constructed as a guaranty of patent infringement. Copyright 2023 LIPOLY.

Shiu Li Technology has advanced manufacturing technology at our HQ in Taiwan. All of our products undergo extensive testing in our state-of-the-art experimental development lab and reliability testing lab. Shiu Li has top-of-the-line manufacturing technology, a complete experiment development lab, and an advanced reliability testing laboratory.

TESTING CAPABILITIES

- Thermal Resistance Testing
- Thermal Conductivity Testing
- Viscosity Testing
- Hardness Testing
- X-ray Testing
- Compression Force Testing
- Peeling Strength Testing
- Holding Power Testing
- Attenuation Testing
- Electrical Resistance Testing
- Dielectric Testing
- GC Testing
- Thermal Aging Testing
- Thermal HAST Testing
- Thermal Cycling Testing

Our Branches

